
N

DTICELECTE f
SJAN~ U S

AUTOMATIC DETERMINATION OF
RECOMTMENDED TEST COMBINATlINS

FOR ADA COMPILERS

TIIESIS

Jatmes Stuata M'varrE
Captain, USAF

AFIT/G CS/ENG/90D-09 Q

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE !NSTI TUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

3- 07

AFIT/GCS/ENG/90D-09

AUTOMATIC DETERMINATION OF
RECOMMENDED TEST COMBINATIONS

FOR ADA COMPILERS

THESIS

James Stuart Marr DTIC
Captain, USAF f ELECTE J

<fA-TGCS/ENG/90D-09 JAN 0 71991

Approved for public release; distribution unlimited

AFIT/GCS/ENG/90D-09

AUTOMATIC DETERMINATION OF RECOMMENDED

TEST COMBINATIONS FOR ADA COMPILERS

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science (Computer Science)

James Stuart Marr, B.S.

Captain, USAF

December, 1990

Approved for public release; distribution unlimited

Preface

The purpose of this research was to investigate techniques for automatic identification

of recommended test combinations for Ada compilers. From the outset, this task was

already considered "far more intuitive" than any "reasonable algorithm" could be expected

to handle. With the contractual development of such a tool deemed impractical, I possessed

a research topic with a wide-open challenge. Whil the prototype program I developed is

still dependent on a certain amount of "human intuition", it did demonstrate the potential

benefit of using such automated techniques for identifyi g rec, -mended test combinations

for Ada compilers.

I am grateful to several individuals for their contributions toward the completion

of this thesis. To begin my background research, I solicited information from the com-

puter network community. Several individuals were kind enough to E-Mail references to

published works or experts in the field of compiler testing. To each of them I extend my

thanks. In particular, I must express my appreciation to Glenn Kasten of Ready Systems,

California for providing the Gen test case generator that played a key role in this whole

effort. Without it, I would not have been able to develop my prototype. I also thank

Steve Wilson of the ACVC Maintenance Organization and Deborah Rennels of New York

University for providing important background information on this problem and the ad-

vances being made in related applications. I thank my thesis advisor, Maj Pat Lawlis,

for her guidance and comprehensive review of several iterations of thesis drafts. I also

thank my committee members, Maj Dave Umphress and Maj Jim Howatt, for their help

in introducing me to this research topic and for their assistance as readers.

ii

Above all, I thank my Lord Jesus Christ for giving me the ability and endurance

to reach this culmination of my AFIT experience. And finally, I wish to thank my wife

Melissa for supporting me throughout this endeavor.

C'ommit thy way unto the Lord, trust also in Him, and le shall bring it to pass.

Psalmn 37.5

James Stuart Mvarr

Accession For

NTIS O1RA&

Unan-nounced

SBy - -~

Availability Codes
Ail miad/or

Dbist Sc~

Table of Ooidtents

Page

Preface.....

List of Figures. viii

List of Tables x

List of Acronyms xi

Abstract. xiii

I. Introduction. 1-1

1.1 Ada Back.ground. 1-2

1.2 Ada Compiler Validation Capability 1-3

1.3 Ada Features Identification System. 1-3

1.4 Problem Statement. 1-4

1.5 Scope. 1-6

1.6 Development Environment 1-8

1.7 Approach 1-8

1.8 Thesis Overview. 1-9

11. Literature Survey 2-1

2.1 Compiler Validation and Testing 2-1

2.2 Ada Compiler Validation Capability (ACVC) 2-3

2.2.1 ACVC 'Developmeitt Approach. 2-3

2.2.2 Ada Compiler Vafidation Implementers' Guide 2-5

2.2.3 Validation Procedures. 2-6

2.2.4 ACVC Limitations.. 2-7

iv

Page

2.3 Automatic Compiler Testing. 2-8

2.3.1 Annotating Grammars. 2-8

2.3.2 Compiler Test Case Generators 2-12

2.4 Conclusion 2- IL

III. Solution Design. 3-1

3.1 Objective 3-1

3.2 Annotating the Ada Grammar 3-1

3.3 Processing the Grammar. 3-6

3.4 Analyzing Combinations 3-7

3.5 Database Interface. 3-7

IV. Solution Implementation. 4-1

4.1 Grammar Annotation 4-1

4.2 Gen to ALIANT Interface. 4-4

4.3 ALIANT Prototype Development 4-6

V. Test and Analysis 5-1

5.1 Test Objectives 5-1

5.2 Grammar Test Setup 5-2

5.3 Adageni Grammar Results 5-4

5.4 Adagen2 Grammar Results. 5-12

5.5 Error Condition Analysis. 5-17

VI. Conclusions and Recommendations 6-1

6.1 Research Conclusions 6-1

6.2 Recommendations for Fuirther Research. 6-3

6.3 A Final Word. 6-6

V

Page

Appendix A. Gen - A Test Case Generation Program. A-i

A.] Grammars. A-i

A.2 Ada Grammar to Gen Grammar A-2

A.3 Building Rules A-3

A.4 Randomness Constructs A-4

A.5 Using the Test Case Generator. A-5

Appendix B. ACVC Test Class Examples. B-i

B.1 Rehport Utility Package. B-i

B.2 Class A Test Example B-3

B3.3 Class B Test Example. B-5

B.4 Class C Test E xample B-7

B3.5 Class D Test Example. B-9

B.6 Class E Test E xample B-i1

13.7 Class L Test E xample B-14

Appendix C. Lox Description. C-i

CAl Lox Description. C-i

C.2 Sample lex-spec Listing C-8

0.3 Sample mk-ispec Listing. C-i5

Appendix D. Source Code. D-1

D.i Shell Script D-1

D.2 Ada Code. D-4

Appendix E. Input Grammars E-

E.1 Adageni Grammar. E-1

E.2 Adagen2 Grammar. E-10

vi

Page

Appendix F. ALIANT Operating Instrufdions and Output. F-i

F.1 Interactive Operating Instructions. F-i

F.2 Batch Operating Instructions F-5

F.3 Sample Interactive Output F-7

F.4 Sample Support File Formats. F-il

Bibliography BIB-i

Vita VITA-i

vii

List of Figures

Figure Page

1.1. AFIS Requirements 1-5

1.2. AFIS Diagram. 1-5

3.1. ALIANT Prototype Context Diagram 3-2

3.2. ALIANT Process Descriptions. 3-3

3.3. Ada Identifier Grammar Rules. 3-4

3.4. Gen Input for Identifier Grammar Rules 3-4

3.5. Modified Gen Input for Identifier Grammar Rules. 3-5

3.6. ALIANT Prototype Data Flow Diagram 3-8

4.1. ALIANT Prototype Requirements 4-7

4.2. Executing ALIANT Prototype 4-8

4.3. ALIANT Prototype File Descriptions 4-9

4.4. ALIANT Object-Oriented Description. 4-11

4.5. ALIANT Structure Diagram. 4-12

4.6. Matrix-Pkg Procedure Descriptions 4-13

4.7. Creating Yylex Object Code. 4-16-

4.8. Creating Executable ALIANL-Driver. 4-17

4.9. Modifications to lex.yy.c Program 4-18

4.10. Features-Pkg Procedure Descriptios 4-19

4.11. Creating lex..spec Lex Specification. 4-21

4.12. ALIANT Prototype Error Detection 4-27

5.1. Adageni Summary Totals Graph 5-11

5.2. T-Adagenl Summary Totals Graph 5-13

5.3. Adagen2 Summary Totals Graph 5-16

viii

Figure Page

5.4. T-Adagen2 Summary Totals Graph... 1

0.1. Sample Yylex Input/output- 7

ix

List of Tables

Table Page

4.1. Estimated vs. Actual Number of Combinations 4-24

5.1. ALIANT Test Selection Options. 5-5

5.2. AdagenI Grammar Test Results. 5-6

5.3. Adagen2 Grammar Test Results. 5-14

C.1. Lox Size Parameters. C-8

x

List of Acronyms

ACEC - Ada Compiler Evaluation Capability

ACVC - Ada Compiler Validation Capability

AFIS - Ada Features Identification System

AFIT - Air Force Institute of Technology

AI - Ada Issue

AIG - Ada Compiler Validation Implementers' Guide

ALIANT - Ada Language Index Analyzer Tool

AMO - ACVC Maintenance Organization

ANSI - American National Standards Institute

ASCII - American Standard Code for Information Interchange

AVF - Ada Validation Facility

BNF - Backus-Naur Form

BSD - Berkeley Software Distribution

BSI - British Standards Institution

CAMP - Common Ada Missile Packages

COBOL - Common Business Oriented Language

DBavcu - Database of Ada features tested by ACVC

DBpo~S - Database of possible combinations of Ada features

DB,,, - Database of Ada features used in DoD software

DoD - Department of Defense

FCCTS - Federal COBOL Compiler Testing Service

ISO - International Standards Organization

Lai - Listing of ACVC tests affected by AI

LG - Linear Graph

LGN - Linear Graph Notation

LHS - Left Hand Sides

Ln,,,t - Listing of unused and untested Ada features

Lred - Listing of redundant ACVC tests

LRM - Language Reference Manual

L,, - Listing of used but untested Ada features

xi

Lwant - Listing of Ada features users want tested

NYU - New York University

PAT - Program Analyzer Tool

PPG - Pascal Program Generator

RADC - Rome Air Development Center

RHS - Right Hand Sides

SEMANOL - A formal notation for language specification

TGG - Text Generator Generator

VSR - Validation Summary Report

YACC - Yet Another Compiler Compiler

xii

AFIT/GCS/ENG/90D-09

Abstract

A da compilers are validated using the Ada Compiler Validation Capability (ACVC)

test suite, containing over 4000 individual test programs. Each test program focuses, to

the extent possible, on a single language feature. Despite the advantages of this 'atomic

testing methodology, it is often the unexpected interactions between language features

that result in compilation problems. This research investigated techniques to automati-

cally identify recommended combinations of Ada language features for compiler testing.

A prototype program was d; veloped to analyze the Ada language grammar specification

and generate a list of recommended combinations of features to be tested. The output

from this program will be used within the Ada Features Identification System (AFIS), a

configuration management tool for the ACVC test suite. AFIS is being developed by the

ACVC \4aintenance Organization (AMO). The prototype uses an annotated Ada language

grammar to drive a test case generator. The generated combinations of Ada features are

analyzed to select the combinations to be tested. While the skill and intuition of the

compiler tester are essential to the'annotation of the Ada grammar, the prototype demon-

strated that automated support tools can be used to identify recommended combihations

for Ada compiler testing.)

xiii

AUTOMATIC DETERMINATION OF RECOMMENDED

TEST COMBINATIONS FOR ADA COMPILERS

I. Introduction

Functional testing is a commonly used technique for validating programming lan-

guage compilers. It "....is the process of executing a series of generally independent tests

designed to exercise the various functional features of a software product " (32:1051).

Each test case is usually designed to evaluate a limited number of language features. This

practice simplifies the testing process by focusing on the specific objective of the test,

while minimizing interactions between language features. Unfortunately, it is often the

unexpected interactions between language features that result in compilation problems.

Although it may be possible to develop a test case for each language feature, it is im-

practical to develop tests for all combinations of features. Therefore, compiler test suite

developers must determine which combinations of language features to test.

This research investigated techniques to automatically identify recommended com-

binations of Ada language features for compiler testing. A program was developed to

analyze the Ada language grammar specification and generate a list of recommended com-

binations of features to be tested. The output from this program will be used within the

Ada Features identification System (AFIS), a configuration management tool for the Ada

test suite. AFIS is being developed by the Ada Compiler Validation Capability (ACVC)

Maintenance Organization (AMO).

1-1

1.1 Ada Background

The development of the Ada programming language originated in the Common High

Order Language Program, a Department of Defense (DoD) sponsored activity that began

in 1975 (39:11). Among several factors leading to the creation of a standard programming

language, and associated environments, were the need to

* Reduce the Cost of Developing Systems.

e Increase the Portability of Software.

* Increase the Portability of Software Developers.

* Increase Productivity.

e Increase Reliability and Maintainability.

e Support the Management of Complexity and Change. (39:3)

The Ada requirements and design process involved several thousand contributors includ-

ing ... more than 50 people [who] were intimately involved in some facet of the design"

(12:13). The culmination of the "Ada effort" was the completion of the Ada Program-

ming Language Reference Manual, ANSI/MIL-STD-1815A, in 1983 (16). To make sure

that all Ada implementations would conform to this standard, the DoD began researching

validation technology and procedures long before any Ada compilers were available.

It is to the government's credit that Ada [is] the first programming language
to have [had a] ineans for enforcing tle spdcification as well as art artalysis uf
potential implementation difficulties and oversights available when they [would]
do the most good-before too great an investment [was] umade in diverse (and
probably divergent) implementation efforts and (even more important) before
a large user population [came] to depend on nonconforming compilers. (21:58)

1-2

1.2 Ada Compiler Validation Capability

"In September, 1979, SofTech, Inc. started work on the Ada Compiler Validation

Capability (ACVC), an effort aimed at developing conformity tests for Ada compilers"

(23:195). The ACVC is the means by which an Ada compiler is tested to insure compliance

with the requirements of the Ada Programming Language. The ACVC consists "...of the

test suite, the support programs, the ACVC user's guide and the template for the validation

summary report" (1:3). A validated and certified Ada compiler implementation is one that

has successfully passed the ACVC tests according to the procedures outlined in (1). The

ACVC Maintenance Organization (AMO) at Wright-Patterson AFB, Ohio, provides the

technical and administrative support required to produce and distribute ACVC versions,

and perform quality control and configuration management on the ACVC test suite.

1.3 Ada Features Identification System

The Ada Language is continually subject to new interpretations and refinements that

affect the ACVC test suite. As Ada Issues (Als) are distributed, the AMO must identify

affected ACVC tests for modification manually. "With 4000 tests in the test suite and a

large and growing number of AIs, hand identification is becoming increasing ineffective"

(3:1). For example, one recent revision to the ACVC validation suite contained "...more

than 400 changes compared with the previous set of tests, ... [A]bout 400 of those changes

were just clarifications and about 43 were substantive in nature" (7). These and other

challenges led the AMO, in early 1988, to propose the development of the Ada. Features

Identification System (AFIS). The AFIS would be used to identify which Ada language

features need to be tested in combination, identify redundant ACVC tests, identify, for

1-3

modification, those ACVC tests affected by Als, and provide a smooth transition of the

ACVC to the next Ada standard, Ada 9X (44, 5, 6).

The proposed AFIS consists of three parts: the Ada Language Index Analyzer Tool

(ALIANT), the Program Analyzer Tool (PAT), and the associated database management

system. The ALIANT would identify the combinations of dependent features that exist in

the Ada language and output the information to the database (DBPO~S). The PAT would

identify those combinations used in operational DoD software and in the current version

of the ACVC, and output the information to the AFIS database (DBV and DBacvc).

The AFIS database would be queried to obtain the following types of information: a list

of all tests affected by an Al (Lai), a list of all redundant ACVC tests (Lred), a list of

unused and untested combinations (Lnnt), and a list of used but not tested combinations

(L,,t). The Lunt listing would be distributed to Ada users to "...determine which of

these combinations they would like to use but can't due to current compiler limitations

(Lwant)" (3:para c.5.8). The Lwani listing would be used to decide what types of tests

should be added to the ACVC test suite. Figure 1.1 summarizes the AFIS requirements

and Figure 1.2 is a diagram of AFIS.

1.4 Problem Slatement

The goal of this research was to develop an ALIANT prototype that would auto-

matically identify recommended combinations of Ada features for compiler testing. The

original AFIS statement of work was issued in 1988 (3). New York University (NYU) is

currently under contract with the AMO to implement the PAT and the AFIS database.

They chose not to attempt implementation of the ALIANT portio.t of the AFIS due to

1-4

RUN TOOLS PRODUCT

ALIANT DBposs (Database of possible combinations)
PAT against ACVC DBacvc (Database of tested combinations)
PAT against DoD slw DBsw (Database of currently used combinations)

QUERY

DBacvc for features identified in AIs Lai (List of all tests affected by AIs)
DBacvc for multiply tested features Lred (List of xedundant tests)
DBposs and not DBsw and not DBacvc Lnunt (List of unused and untested combinations)
Dfposs and DBsw and not DBacvc Lunt (List of used but not tested combinations)

SEND

Lnunt to users Lwant (List of unused combinations users wanted)

Figure 1.1. (44)

LRM Index AACVC

LLntunLed Uiseran

Maintain ACVC

Figure 1.2. (44)

1-5

the combinatorial complexity of determining the combinations of Ada language features

to test (34).

With regard to compilers it is certainly true that it is not practical to test
all possible combinations of language components and data types. ... [but] it is
certainly possible to test all reasonable combinations. What is "reasonable" is
admittedly a subjective judgement, but such subjectivity regarding test limits
is hardly unique to software testing. (32:1051)

The problem is how to identify the "reasonable" combinations that should be tested.

As the ALIANT name implies, the original statement of work for AFIS suggested analysis

of the Ada Language Reference Manual (LRM) index to determine the recommended

combinations of Ada features to test. A more formal definition of the relationships among

Ada language features exists in the Ada grammar as found in Appendix E of the LRM

(16).

Upon first examination, it was believed that feature dependencies were re-
vealed by extracting each of the features and nested subfeatures from the index.
Unfortunately, identifying dependencies proved to involve far more intuitive
judgment than at first believed. No reasonable algorithm has been developed
to effectively extract combinations of dependent features from the index. (35:3)

The AFIS is clearly incomplete without the ALIANT capability. To reap the full advan-

tage of the AFIS capability, a method must be developed to generate the recommended

combinations of Ada language features.

1.5 Scope

The scope of this research effort was limited to the identification of the recommended

combinations of Ada features. This research did not attempt to generate the test cases

1-6

containing the recommended combinations. The focus was on demonstrating the feasibility

of the proposed ALIANT subsystem of AFIS.

The type of feature combinations generated by this research attempted to parallel the

primary features identified for the PAT subsystem. The PAT development team identified

a set of 297 primary features from the Ada grammar and from terms in the Ada LRM

index.

In most cases, the features are either nonterminals of the syntax summary,
or major terms of the index (those printed in boldface), or both. In some cases,
one feature is a general or basic term, and a few other features are special cases
of that general feature. For example, the feature "generic-formatype" has sub-
cases "generic.formaltype:discretetype", "generic.formal-type:integertype",
etc. (35:8)

These primary features have effectively taken simple combinations of features and given

them a name so they can be treated as atomic features. Within the PAT subsystem, these

primary features are used to identify the features that exist in particular test patterns used

to search the ACVC test suit or DoD software. A detailed description of how PAT uses

these test patterns and primary features can be found in (35).

The recommended combinations of Ada featizres generated by the ALIANT prototype

do not specify the order or context of the features. The PAT subsystem must be used to

determine if a specific permutation of a given primary feature combination occurs in the

ACVC test suit or DoD software.

1-7

1.6 Development Environment

The availability of the following resources was assumed during the development of

the solution design:

* The Gen compiler test case generator (See Appendix A for a description of the Gen

software).

* An Ada programming environment which would allow interface to the Gen software
which is written in C.

* An electronic copy of the Ada grammar which would be annotated to meet the input
requirements of the Gen software.

The Verdix Ada programming environment, hosted on the AFIT Galaxy computer

(Elxsi-6400 with 4.3BSD UNIX operating system), was chosen as the development envi-

ronment for the ALIANT prototype. That computer system provided the necessary Ada

support tools and was compatible with the requirements of the Gen software. The elec-

tronic copy of the Ada grammar was obtained through the Ada Information Clearinghouse

services to simplify the entry of the annotated grammar input for the ALIANT prototype.

1.7 Apprvach

The purpose of this research was to investigate techniques for automatic identification

of recommended Ada compiler test combinations. These techniques have been applied to

the developn, nt of an ALIANT prototype, which uses the Ada language grammar as input.

The first step in the research was the completion of a survey of literature related to

this topic. Next, the Gen program was used to investigate generation of Ada test cases.

Initial tests used a subset of the Ada grammar, modified to meet the particular input

1-8

requirements of the Gen software. Since the gener,ator tool can potentially generate an

infinite number of combinations, experimcntation with the Gen randomness constructs

was required to limit the combinations to a "reasonable" number. After refining the

techniques on a subset of Ada, the test case generation was extended to include the full

Ada grammar. Next, a program was developed to analyze the Gen output. This program

was used to search the generated Ada language combinations and perform a tabulation of

the most frequent combinations of two features, three features, and so on. An interface

between the analyzer program and a prototype AFIS database was developed to complete

the ALIANT prototype. The final step of this thesis was analyzing the feasibility of

implementing the ALIANT validation tool, based on the ALIANT prototype. The analysis

includes recommendations for further study and improvements.

1.8 Thesis Overview

Chapter II documents the results of the literature review and provides background

material for this thesis. The emphasis is on Ada compiler validation and methods for

generating compiler test cases.

Chapter III outlines the design of the problem solution. This design describes the

steps required to implement the problem solution and indicates what resources/tools are

used to solve the problem.

Chapter IV covers the implementation of the problem solution. It describes any

tl.II1,Ul!LCb ChUtmuitcId duiUllg i1Lplc)ietVdtiU1 ad dib,.ubbub wht deLlbiuiib ve iiadc, if

any, to modify the solution design.

1-9

Chapter V includes the final analysis of the problem solution. The results of the

solution (ie. generated computer products) are presented and their meaning is discussed.

Finally, Chapter VI contains conclusions about the overall thesis effort and recom-

mendations for further study. Supplementary material and computer generated products

are included as appendices to this thesis.

1-10

II. Literature Survey

This chapter provides background material related to this research effort. It begins

with a brief discussion of compiler testing in general and then describes the Ada Compiler

Validation Capability (ACVC). The ACVC development approach, validation procedures

and ACVC limitations are presented. Next, several formal language specification tech-

niques are described including attribute grammars, denotional semantics and high-level

semantics. Finally, four different research papers concerning automated compiler testing

are summarized. Some of the techniques used in these papers will be applied to this thesis

research.

2.1 Compiler Validation and Testing

"Software validation ... [is] the process of testing a completed software product in its

operational environment" (32:1051). Compiler validation checks the conformance of a com-

plier implementation to the applicable language standa. ' and differs from the validation

of applications software in several respects:

* Validation systems must be capable of functioning on a variety of dissimilar hardware
and operating systems.

* The staff performing the validation is not involved in the development or the main-
tenance of the products being tested.

* The results of a validation could impact the eligibility of the product for procurement.
(32:1051) (10)

The most commonly used method for testing compilers is functional testing. As

mentioned in Chapter I, "functional testing is the process of executing a series of generally

2-1

independent tests designed to exercise the various functional features of a software product"

(32:1051). This testing method is considered to be the "most thorough technique presently

available" for testing software. Since compilers have a formal specification, the grammar,

they are especially "amenable" to construction of functional tests for each feature. In

fact, a later section in this chapter will discuss tools that will automatically generate

compiler test cases from the grammar that defines the language. Even with such automated

tools, exhaustive testing is impractical, if not impossible. Therefore, compiler validators

must select a reduced set of test cases that will achieve nearly the same confidence level

as exhaustive testing. A technique applicable to limited combinations of independent

language features is orthogonal Latin squares. According to Robert Mandl, this technique

... yields the informational equivalent of exhaustive testing at a fraction of the cost"

(31:1054).

Most validation test suites for standard languages still rely on time consuming man-

ual generation of test cases. For example, the Federal COBOL Compiler Testing Service

(FCCTS) and the Ada Compiler Validation Capability (ACVC) manually develop individ-

ual test cases for compiler testing. In most cases, this is satisfactory because once the test

suite is developed it remains static except for occasional changes to the language standard

that require the test suite to be updated. Later sections of this chapter will discuss how

automatic generation may be used as a complement to such manually prepared test suites

(32) (23) (14) (15).

The compiler validation process only determines the conformance of a given com-

piler to the associated language standard. A validated compiler is one that meets the

requirements of each test case in the validation suite. Validation is not the same as eval-

2-2

uation, in which a compiler is tested for such factors as efficiency and speed. A validated

compiler may not be suitable for certain applications for various reasons, such as memory

limitations or machine dependencies. Additional evaluation techniques are used to deter-

mine the fitness of one compiler or another for a specific user application (40) (20) (27)

(13).

2.2 Ada Compiler Validation Capability (ACVC)

The ACVC te st suite is used to validate Ada compiler implementations. This section

examines the background of the ACVC and describes the procedures used to validate a

compiler.

2.2.1 ACVC Development Approach. The development of the ACVC test suite be-

gan before the Ada language Standard was published. "The decision to establish an in-

dependent test team before Ada's design was even near completion was essential to the

success of the ACVC effort and helped considerably in improving the precision of the even-

tual Standard" (23:211). From the start, the policy was established that would require a

compiler implementation to pass "all applicable correct tests" to be usable on DoD projects

(23:201).

The development philosophy for the ACVC test suite included the requirement for

many small test cases. Each test case was designed to test a limited number of Ada features

to minimize the impact of a failed test and to simplify identification of the feature that

failed the test. Particular attention was given to those parts of the language that are hard to

implement. This philosophy is intended to make certain all compiler developers implement

2-3

the language carefully and completely. The ACVC test programs were developed manually

at an average cost of "8 person-hours" for each test (23:211).

The [ACVC] test suite is updated continually and released periodically.
Updates are needed to correct errors in tests. In addition, new tests are added,
and sometimes existing tests are strengthened. Sometimes tests have to be
changed because of interpretations recommended by the Language Maintenance
Committee/Panel. (23:208)

The ACVC test suite consists of over 4000 test files in the following six classes:

* Class A : legal Ada programs that should compile successfully.

* Class B : illegal Ada programs that should not compile successfully.

e Class C : legal Ada programs that should compile and execute successfully.

* Class D : tests that check compiler capacity limits.

* Class E : executable tests that check implementation dependent options.

9 Class L : illegal Ada programs that should be detected at link time. (2:1-4,1-5)

This classification of test cases shows the "breadth of test coverage and helps automate the

analysis of test results" (23:60). Although there are a large number of individual test cases,

many of the tests can be chained together to reduce the amount of manual intervention

required to validate a compiler. Much of the analysis of test results is automated to

improve responsiveness and reliability. Examples of each class of test cases are provided

in Appendix B.

The Ada standard permits some features to vary among compiler implementations.

Some ACVC test cases are designed to determine the behavior of a compiler with regard

to such characteristics as nesting of loops, expression evaluation, rounding methods, input

2-4

and output features, and so on. The results of such test cases are reported for informational

purposes in a Validation Summary Report (VSR). Such features as maximum length of an

input line or the maximum precision in floating-point type declarations will differ between

compilers. Therefore, some of the ACVC test cases are "templates" that include test

parameters to make the test case compatible with the compiler being validated. After

providing appropriate values for these parameters and adding any required job control

statements, the test cases are submitted to the compiler for testing (21:62).

2.2.2 Ada Compiler Validation Implementers' Guide. The Ada Compiler Valida-

tion Implementers' Guide (AIG) (22) was developed in response to the DoD's requirement

that the ACVC contractor produce "a report to aid compiler developers":

The report should identify common errors in Ada compilers, describe com-
Riler implementation techniques that will avoid difficulties, and provide ex-
emplary programs that illustrate potential trouble spots in, conforming to the
standard and that clarify the intended interpretations of the standard. (21:58)

The AIG is written and used in parallel with the Ada Language Reference Manual

(LRM). Each section in the AIG corresponds to a section in the LRM that describes a

particular feature of the language. The AIG section contains up to seven subsections as

follows:

e Semantic Ramifications - documents semantic implications that might not otherwise
be obvious from a reading of the LRM.

e Legality Rules - explicitly lists context-sensitive syntactic and semantic legality rules

to be checked by an Ada translator prior to beginning execution of an Ada program.

* Exception Conditions - explicitly lists the conditions under which an implementation
is required to raise an exception associated with some predefined language construct.

2-5

v 'rest Objectives and Design Guidelines - specifies the validation tests to be written,
lists the problems to keep in mind while writing test cases under "Implementation
Guidelines", and, when necessary, outlines the program structure required to satisfy
a test objective.

* Approved Interpretations - summarizes approved interpretations of the LRM which
correct errors, ambiguities, or inconsistencies.

* Changes from July 1982 - describes changes to the draft LRM, dated July 1982, that
affect the Ada feature describe in this AIG section.

9 Changes from July 1980 - describes changes between the July 1980 and July 1982
LRM drafts. (22:1-1, 1-2)

2.2.3 Validation Procedures. The ACVC test suite is released for a six month review

period before it is used in validation tests. During that time, compiler implementers or

other parties may submit comments to the ACVC Maintenance Office (AMO). "At the

end of six months, the new version of the ACVC is released for validation use for a period

of 18 months" (1:9). The procedures for validating an Ada compiler are specified in the

Ada Compiler Validation Procedures (1). The validation by testing is accomplished in the

following six steps:

" Validation Agreement - the compiler implementer becomes a customer of an Ada
Validation Facility (AVF) by formal agreement.

" Prevalidation - the customer tests the candidate Ada compiler using a customized
ACVC test suite and submits results to the AVF.

* Validation Testing -' the AVF tests the candidate compiler using the customized
ACVC test suite and compares with the prevalidation tests.

" Declaration of Conformance - the customer declares the availability of a validated
Ada compiler.

" Validation Summary Report - a Validation Summary Report (VSR) is produced
by the AVF describing the extent to which an Ada compiler conforms to the Ada
standard.

" Validation Certificate - a Validation Certificate is issued that expires one year after
the expiration date of the ACVC version used for the validation. (1) (2)

2-6

Under certain conditions, aj, A.- compiler implementation may be validated by regis-

tration. This method is used in cases where a validated compiler is changed for "corrective,

adaptive, or perfective" reasons within the "scope of software maintenance" (1:17). These

procedures allow minor modifications to be made to a validated compiler without having

to reaccomplish the entire validation by testing process.

2.2.4 ACVC Limitations. The ACVC validation buite determines the conformance

of a compiler implementation with the Ada standard, but it does not give any indication of

its quality. As was mentioned earlier, validation is not the same as evaluation. To select

an Ada compiler for a particular application, the user must consider other requirements

such as speed, memory availability, support tools, etc. "Although over 200 validated Ada

compilers are available for more than 25 computer architectures, compiler technology has

been inadequate to support many of Ada's features" (19:59). The Ada Compiler Evaluation

Capability (ACEC) is a test suite designed to evaluate the performance characteristics of

Ada compilers, a task the ACVC was never intended to handle (40) (41).

An example of known limitations of current ACVC test suites concerns the use of

generic units. During the development of the Common Ada Missile Packages (CAMP) soft-

ware by McDonnell Douglas Astronautics Company in St. Louis, contractors noted that

"validated Ada compilers frequently cannot handle any but the simplest generic units"

(24:75). The CAMP contractors pointed to the fact that most ACVC test cases are de-

signed to test a single objective. As a result, some of the more complicated cases are not

tested and validated compilers may not be able to support a "complex mix of generic units,

essential to the use of dynamic reusable software" (24:75). They recommended that more

2-7

complicated test cases be added to the ACVC test suite to remove the inadequacies noted

during the CAMP project (24) (37) (18).

The configuration management of over 4000 ACVC test cases is becoming a

formidable task. Some test cases are redundant and periodic updates of test cases con-

tinually change the composition of the ACVC test suite. Currently, the identification of

test redundancies and other maintenance functions are done by hand. The ACVC Main-

tenance Office (AMO) has undertaken the development of several automated tools that

will improve the configuration management capability of the ACVC. As described in the

introduction, the purpose of this research was to investigate the feasibility of one of those

automated tools, the Ada Language Index Analyzer Tool (ALIANT). The capability to

automatically identify test combinations for Ada compilers will help improve the ability of

the ACVC to validate Ada compiler correctness (3).

2.3 Automatic Compiler Testing

Advances in automated techniques for compiler testing are closely related to the

methods investigated in this research for identifying recommended test combinations for

Ada compilers. This section presents the background on developments in annotated gram-

mars and compiler test case generators. Similar techniques were applied to the development

of the ALIANT prototype.

2.3.1 Annotating Grammars. The first step in developing automated compiler test-

ing tools is to determine the format of the input grammar that will guide the generation

of compiler test cases (See Appendix A.1, for a brief summary of grammar notation or

2-8

(33) for more in depth coverage of grammar and compiler terminology). A context-free

grammar can generate programs that are valid syntactically but invalid semantically. In

other words, some valid programs can have invalid meaning. A language grammar can

also generate an infinite number of programs or infinitely long programs; therefore, ad-

ditional grammar constructs are required to limit test case generation to meaningful and

reasonably-sized programs. The following discussions present some research efforts in the

area of adding semantics to grammars.

2.3.1.1 SEMANOL specification. A 1978 Rome Air Development Center

(RADC) research effort (9) investigated methods for automated compiler test case gener-

ation. This research was spawned by the apparent inadequacy of existing compiler test

suites. The RADC researchers noted that existing test suite development methods were

" Not systematic.

• Not designed with reference to measures of test effectiveness.

" Prepared manually.

" Expensive. (9:2)

The SEMANOL specification language, developed as part an earlier RADC research

effort, is used to define a language's grammar and the associated context-sensitive features

(this RADC report did not give the origination of the SEMANOL acronym). "A formal

SEMANOL specification of a programming language is a program; a program for processing

a source language program text written in the programming language being defined" (9:5).

The SEMANOL metalanguage, or language that describes another language, is combined

with the context-free grammar of a computer language to form the specification. The

2-9

specification consists of declarations, control commands, context-free syntax, and semantic

definitions (9:10). Although a considerable degree of human intervention is still requircd

to set up the SEMANOL specification, great benefits in reduced test case generation time

and increased test quality and consistency can be realized. This research effort established

a design framework for further experimentation and implementation (9).

2.3.1.2 Attribute grammars. Attribute grammars are used for the formal

specification of the semantics of a programming language. The development and use of an

attribute grammar for Ada is described in (17). Formally, an attribute grammar consists

of:

* a context-free grammar.

* a set of attributes for each symbol of the context-free grammar.

• attribution rules establishing the value of every attribute according to the syntactic
production in which it appears and in terms of the values of other attributes of
symbols in the same production.

* conditions involving attributes of one production. If a given condition is not satisfied
by the attribute values of a particular subtree, a specific error message is given. (17:9)

An example of attributes in the Ada language is its strong type checking. The context-

free grammar may define a statement to allow two identifiers separated by an operator such

as "+". The syntax is valid for any two identifier names formed by a legal combination of

characters. However, if one identifier was declared to be an integer type and the other is a

character type, the semantics of the language require an error to be generated. Compilers

must include the appropriate routines to check attributes of various language symbols.

Attribute grammars are a tool to specify such semantics within the context-free grammar.

2-10

Such attribute grammars are used in test case generation tools to insure the creation of

meaningful test cases in terms of syntax and semantics.

2.3.1.3 Denotional and High-Level Semantics. Denotional semantics is a for-

mal method for giving mathematical meaning to programming languages. "Originally used

as an analysis tool, denotional semantics has grown in use as a tool for language design

and implementation" (36:xi). As described in previous sections, the syntax of a program-

ming language can be described quite well with a context-free grammar. The semantics

or meaning of the sentences or programs generated by a language are more difficult to

represent formally. Denotional semantics is a method that is used to specify, in formal

notation, the meaning of a program. "The denotional semantics method maps a program

directly to its meaning, called its denotation. The denotation is usually a mathematical

value, such as a number or a function" (36:3). These formal specifications are being used

in several research efforts that "... demonstrate the possibility of automatically generating

compilers for no., ' * ' I languages from formal semantic descriptions" (29:3). These same

principles could be applied to automatic generation of the test cases to test a compiler.

Unfortunately, the compilers generated from such "classical" formal specifications

tend to have performance characteristics much worse than handwritten compilers (29:3).

As a result, a new style of semantic description is being developed called high-level seman-

tics. The ". .. high-level descriptions are easier to write and comprehend than traditional

denotational specifications ... [and] realistic compilers can be straightforwardly generated

from high-level descriptions" (29:4). As mentioned before, lessons learned in compiler

generation can be applied to test case generation as well.

2-11

2.3.2 Co,.tpiho, Test Case Generators. Several research efforts have investigated

the automatic generation of compiler test cases. This section summarizes four research

reports describing the development of compiler test case generators.

2.3.2.1 An Automatic Generator for Compiler Testing. This article by

Franco Bazzichi and Ippolito Spadafora (8) examines a method for automatically gen-

erating compilable test programs. At the time this article was written, several methods

had been "...studied and developed t.o t-.st compilers ... however, none of these methods

... [had] solved the problem completel, and efficiently" (8:343). The objectives of this

study were twofold. First, "...to automatically generate compilable programs for differ-

ent programming languages, rpidly and cost-effectively" (8:343). The authors adopted

a context-free parametric gra.amar which i. t grammar containing additional context-

sensitive aspects. They used the grammar as ai.. input to an algorithm that would produce

a set of compilable programs. The second objective was to "...to generate incorrect pro-

grams in a controlled way, using the above-described methodology" (8:343). The incorrect

programs would be used to demonstrate that a compiler would reject a program containing

errors.

Features of Complete Compiler Tests. The ideal method of testing a

computer program is to run enough test cases so that every path in the code is executed

at least once. Unfortunately, the manual preparation of such exhaustive tests is very time

consuming. When a compiler is analyzing a source program, there is a clear relationship

between the states the compiler traverses and the syntax rules that were used to generate

the original source code. "Therefore, it is reasonable to assume that a fairly complete test

2-12

of a compiler should include a set of programs containing all the syntactical entities of the

language: the set of test programs should be derivable from the source grammar, using

each [rule) of the grammar at least once" (8:344). But there also must be a "criterion of

minimality" to keep the size of generated test programs within certain efficiency limitations.

For this reason, Bazzichi and Spadafora chose the criterion of "shortest derivation" when

generating test programs (8).

Limitations of Automatic Generation. The automatic generation of test

programs has certain limitations. Without knowing the inner workings of the compiler

under test (black box testing), the automatically generated test cases cannot be expected

to detect all the errors a compiler may have. The involvement of experienced compiler

implementers is essential to understanding what types of errors are most likely. "The

type of errors which implementers may make must be hypothesized and tests must be

constructed which can only succeed if there are no errors present" (8:344). Therefore, the

authors of this study included a "flexible set of directives" that allow the generated test

cases to be produced in a "controlled" way according to the various parameters provided

by the compiler implementers (8).

2.3.2.2 Independent Testing of Compiler Phases Using a Test Case Generator.

This article by William Homer and Richard Schooler (25) considers the problems associated

with independent unit testing of compiler phases. The discussion focuses on "...the testing

of a large compiler whose modules, or phases, communicate via complex graph-structured

intermediate representations" (25:1). The design of any large computer program in modules

with well defined interfaces allows the development of each part to progress independently

2-13

of one another. Each module can be unit tested before final ;ntegration of all components.

"The obvious source of unit test inputs for a particular phase would be the preceding

phases, but staffing, scheduling, and technical considerations often lead to parallel, or 'out

of order', development of the phases" (25:2). As was mentioned in the previous article, the

manual fabrication of test cases is too time intensive for anything beyond a few simple test

inputs. The authors of this article present a generator that takes as input a context-free

grammar with some context-sensitive constructs to insure meaningful test cases will be

generated.

Linear Graph (LG) System. The compiler tested in this study uses the

LG (Linear Graph) System. LG provides compiler development tools and uses a human-

readable notation called LGN (Linear Graph Notation). The LGN "...was meant to

facilitate creation of test inputs and examinations of phase outputs" (25:3). The LGN

format can be used to define test inputs to later compiler stages with Jut having the earlier

stages completed. The LG system will convert the LGN into the proper internal data

structures for execution. All that is needed is a way to automatically genef'ate the large

LGN tests that ,,ould be very difficult to produce manually. The authors used a tool called

Text Generator Generator (TGG) to automatically generate the LGN test cases. TGG

inputs a context-free grammar and generates strings of the grammar. As with the previous

study, this test case generator allows special "context-sensitive" constructs to be added to

the grammar to control the types of strings generated and to provide "pseudo-random"

behavior (25).

2-14

2.3.2.8 Automatic Generation of Executable Programs to test a Pascal Com-

piler. This article by Dr. C. J. Burgess (11) describes work done to develop a means to

automatically generate compiler test programs that are immediately compiled and exe-

cuted by the compiler under test. This differs from the methods discussed in the previous

two articles, in that those methods only generated the source code for test programs. The

programs still had to be individually compiled and tested. This article specifically concen-

trates on the generation of test programs for Pascal compilers. The programs are generated

from an attribute grammar and ".. .contain self-checking code so that only those programs

that fail to execute correctly will produce any output. Thus, by examining the output file,

those test programs that have failed to run correctly can be q'lickly identified, even though

a large number of programs may have been run" (11:304). Dr. Burgess feels that the com-

bination of automatically generated tests and manually generated tests should increase a

tester's confidence that the compiler is correct.

Testing a Compiler. The test case generator system described by Dr.

Burgess is designed to produce a specified number of test programs, compile and execute

each one, and produce error messages for any tests that failed. If a test program compiles

and executes without errors, the only output produced for that test program will be a

Pascal comment listing the values used for random number seeds and the number of the

test program. If, however, the test program produces a compilation error, or fails at

execution time, additional error messages will be output. The source code for each test

program is discarded alter execution, and the next test program is generated. This process

continues until the desired number of test programs have been generated, compiled, and

2-15

executed. The output listing can then be examined for error messages. If error messages

are found, "...the comment just before the output will contain the seeds from which the

source of the test program which failed can be recreated. This means that a large number

of programs can be generated and run through the compiler with very little extra demand

on file space" (11:315).

2.3.2.4 Experience with a Compiler Testing Tool. This report by B. A. Wich-

mann and M. Davies (42) describes a compiler testing tool called the Pascal Program Gen-

erator (PPG). As with the Ada language, the Pascal programming language has a standard

validation suite that is used to validate Pascal compiler implementations.

The [validation] service, offered by BSI [(British Standards Institution)]
and its licencees [sic] world-wide, ensures that validated compilers conform
closely to the ISO-Pascal Standard. While the 700 or so test programs in
the validation suite ensure that the syntax and semantics of the language are
supported adequately by validated compilers, it is nevertheless the case that

validated compilers still have significant bugs. (42:3)

The "bugs" that cause the most concern are those "...in which the compiler generates

incorrect code from a legal program" (42:3). The PPG is being developed as a comple-

mentary testing tool to the existing Pascal validation suite. Given a few inputs for a

random number generator, it will generate self-checking executable Pascal programs.

Testing Experience. The PPG is still under development. Many issues

must be resolved, but the initial indications are that such an automated tool could be

very useful to compiler developers. The PPG can generate very large and complex tests

that may fail due to a bug that is unlikely to occur in normal use. For this reason,

2-16

it is too early to suggest incorporating the use of such generators in formal validation

suites. However, compiler-writers could benefit from such test generators for "in-house"

development testing. These tools may help identify errors that would not be detected by

the validation suite. The authors of PPG are considering a similar implementation for

the Ada programming language. They expect that such an implementation will be more

difficult to accomplish since Ada is more complex than Pascal (42:13).

2.4 Conclusion

Since grammars define the valid sentences in a given language, they can be used to

automatically generate compiler test cases. The four research articles presented in this

chapter are examples of the progress that has been made toward developing automated

compiler testing tools . Most mature standard languages already have a comprehensive

test suite that has been manually developed over several years. Automated tools could

be used to supplement the formal validation process for these languages. In particular,

the Ada validation process may benefit from these compiler testing tools. The automated

testing tools are perhaps most valuable during compiler development/research in which a

compiler-writer needs the ability to quickly generate many test programs. Further research

in this area is sure to yield new techniques for determining the correctness of programming

language compilers.

The Gen compiler test case generator, similar to the automated tools described in

4.LS cilap1or, wab uL dc in this iebearcn. Appendix A describes Gen in detail and the next

chapter explains how Gen was used to develop an ALIANT prototype.

2-17

III. Solution Design

This chapter describes the solution design chosen to address the problem of deter-

"lining recommended Ada compiler test combinations. As appropriate, background on

other design alternatives is provided to show what options were considered.

3.1 Objective

The overall objective of this problem solution was to develop a prototype of the

ALIANT subsystem of AFIS, the proposed ACVC configuration management tool. The

ALIANT prototype was designed to input an annotated Ada BNF grammar, analyze pos-

sible combinations of Ada features, and output the recommended combinations of Ada

features. A context diagram of the ALIANT prototype is shown in Figure 3.1. As indi-

cated in the context diagram, the prototype consists of two parts: the Gen software and

the analysis/selection procedures. The Gen software will generate feature combinations

according to the annotated Ada grammar (see Appendix A), while the remaining proce-

dures will analyze and select recommended combinations. Figure 3.2 contains the process

descriptions for the ALIANT prototype design presented in this chapter.

3.2 Annotating the Ada Grammar

The first design consideration was deciding how the Ada grammar would be anno-

tatecd to inp4 the input requirements of Gen, the first phase of the ALIAL prototyp,.

The grammar annotation is a manual process that must be completed before the ALIANT

prototype is executed. Before the various Gen randomness constructs could be added to

3-1

Annotated
Ada

Grammar

Grammar
Productions

ALIANT
PROTOTYPE

Gen
L _J
L... -----

Analysis/
Selection
Programs

Formatted
Recommended
Combinations

AFIS

Database

Figure 3.1. ALIANT Prototype Context Diagram

3-2

1.0 Generate Combinations.

Input An annotated Ada grammar in Gen compatible format.

Process This process is the Gen software. Test cases are generated ac-
cording to the annotated grammar. The number of combinations gen-
erated is determined by the generation statement, which is the last
entry in the annotated grammar.

Output Test case combinations containing character strings that were
enclosed in quotes in the annotated grammar.

2.0 Identify Combinaz ions.

Input Test case combih.-Iions from Gen.

Process Combinations are uniquely identified according to the collection
of features they contain. Null combinations and duplicate combina-
tions are discarded. Information stored about each combination will
include the number of features in the combination, the number of
times each feature occurred in the combination, and the number of
duplicates of the combination.

Output A data store containing the above information for each identified
combination.

3.0 Recommend Combinations.

Input Data store containing identified combinations.

Process Combinations are selected from all identified combinations ac-
cording to the number of times a combination was duplicated and the
number of features a combination contains. These threshold values
are entered by the user at runtime.

Output Data store containing recommended combinations.

4.0 Load APIS Database.

Input Data store containing recommended combinations.

Process The recommended combinations are stored in the AFIS database
format. This process translates the data store format into the
database bit-matrix format.

Output Recommended combinations in AFIS database format.

Figure 3.2. ALIANT Process Descriptions

3-3

the Ada grammar, it had to be in a form that Gen would recognize. For example, Fig-

ure 3.3 shows the Ada grammar productions for the identifier as it appears in Appendix

E of the Ada LRM. The direct translation of the grammar productions in Figure 3.3 to the

Gen input format is shown in Figure 3.4. Note the addition of the productions to generate

digits and letters and the ident.tail production to handle the zero or more option in the

original identifier production.

identifier ::= letter {[underline] letter-ordigit}

letter-or-digit ::= letter I digit

letter ::= uppercase-letter I lower-case-letter

Figure 3.3. Ada Identifier Grammar Rules

identifier = letter ident-tail

ident-tail = (("1_" I "") letteror-digit ident-tail) I

letter-or-digit = letter I digit

letter = upper-case-letter I lower-case-letter

upper-case-letter = [A-Z]

lower-case-letter = [a-z]

digit =[0-9]

Figure 3.4. Gen Input for Identifier Grammar Rules

Gen is designed to generate valid, compilable test cases for a given grammar. For his

research, it was necessary to "remember" what language features were used to generate

a)articular test case. For example, when the Gen compatible grammar of Figure 3.4

3-4

is executed by Gen, a series of randomly constructed identifiers is produced. Although

this is what Gen was designed to do, the identification of the Ada features that were

used to generate the identifiers is lost (i.e., ident-tail, letter-or-digit, letter, digit). Since

the purpose of the ALIANT prototype is to recommend combinations of features, the

actual generation of, say, identifiers is not desired. With this objective in mind, a different

approach was considered. By disregarding anything but the nonierminals in each Ada

grammar rule, the input to Gen can be modified so that the output only contains the

names of the Ada features used to generate the test case. Whenever a nonterminal is

to be expanded by a production rule, Gen can be instructed to output the literal string

representing that nonterminal. Referring back to the identifier example, Figure. 3.5 shows

how this modified approach would be used. The literal strings in quotes are included in

the Gen output.

identifier = letter ident-tail

ident-tail = (("underline" I "") letter-ordigit ident.tail) "

letteror-digit = letter I "digit"

letter = "upper.caseletter" I "lower-case-letter"

Figure 3.5. Modified Gen Input for Identifier Grammar Rules

Additional pruning of the grammar can be accomplished by raising the level at which

the literal strings are output. For example, in Figure 3.5, the string "letter" could have

been output instead of either "upper-case-letter" or "lower-case-letter". If the lower level

details are unnecessary, this choice would simplify the rules and the amount of output

produced. Most likely, the annotated grammar would probably go no lower than the level

3-5

of "identifier" in the example rules presented. Since the existing ACVC test cases handle

the simple checks for proper identifier construction, it would only be necessary to note

where an identifier appears in a more complex test case. The ALIANT prototype does not

need such details as what characters formed the identifier or how long the identifier was.

Based on the options just discussed, the modified annotated grammar of Figure 3.5

was chosen to eliminate some of the lowest level detail and to simplify the later analysis

requirements of the Gen output. After the original Ada grammar has been manually

translated into the Gen format described above, the randomness constructs are added to

those rules containing alternatives. The randomness constructs allow the user to tell Gen

which alternatives should be chosen more often than others. A detailed description of these

constiuc.s is provided in Appendix A. The values chosen for these randomness constructs

were based on experimentation and estimates of the most frequently used Ada features.

The next chapter will describe the implementation of the grammar annotation process in

more detail.

3.3 Processing the Grammar

The first step in the ALIANT prototype design is the generation of possible combina-

tions using the Gen software. This step is represented by process 1.0 Generate Combina-

tions in Figure 3.6. Initially, a partially annotated subset of Ada was used to determine the

optimum techniques for generating the test cases. Then, the lessons learned were applied

to larger and larger subsets of AdaJ until the complete Ada language was included. The

details of how the Ada grammar subsets were developed is provided in the next chapter.

The ALIANT design uses an ASCII data store between Gen and the analysis programs.

3-6

This ASCII data store provides a standard text format for storing the feature combina-

tions produced by Gen. This type of interface allows the Gen software to run to completion

without requiring complicated synchronization with the Ada analysis programs.

3.4 Analyzing Combinations

The next phase of the ALIANT prototype design consisted of specifying the processes

to analyze the Gen output and determine the recommended combinations to test. The

purpose of process 2.0 Identify Combinations in Figure 3.6 is to identify each generated

combination and assign a unique identification number to each one. This process discards

duplicate combinations and tallies the number of occurrences of each Ada feature for a given

test case. Process 3.0 Recommend Combinations eliminates combinations that include too

many language features and chooses the recommended combinations. The output from the

analysis phase is in ASCII for later interface to the AFIS database.

3.5 Database Interface

The final step in the solution design was the interface between the ALIANT prototype

and the AFIS database. Process 4.0 Load AFIS Database in Figure 3.6 represents the

interface routine that was designed to load the recommended combinations into the AFIS

database in the appropriate format compatible with the other AFIS subsystems. For this

research, the database format chosen to demonstrate the functionality of this interface was

a bit-matrix. For each recommended combination to be stored in the database. a record

will be output containing a unique identification number and an array of 'O's and 'l's. For

each possible feature in the combination, a '0' will indicate the corresponding feature is

3-7

Annotated 1.0
Grammar F Generate Generated

Combinations Combinations

(Gen)

2.0

Identify Identified
-p- Combinations

Combinations

3.0

Recommend Recommended
S Combinations

Combinations

4.0 Formatted
Recommended

Load Combinations
AFIS -__________

Database

Figure 3.6. ALIANT Prototype Data Flow Diagram

3-8

not included in the subject combination. A '1' will indicate the feature is included in the

combination. A simple example of the database design is provided below for the case in

which there are only twenty features being considered:

1: 01100 1 1000110000 1000

2: 11100000011000000100

3: 00000111000001110000

In the example above, the database contains 3 records numbered 1, 2, and 3. Each array

of 'O's and 'l's corresponds to 20 features numbered from left to right starting at 1. The

first combination consists of features 2, 3, 6, 7, 11, 12, and 17. Each numbered feature

represents an Ada grammar nonterminal symbol. Any program using this database would

have to be given the mapping of feature number to the equivalent Ada feature.

The ALIANT design described in this chapter served as a starting point for the

prototype implementation. The next chapter will describe the development of the ALIANT

prototype using an iterative modeling technique.

3-9

IV. Solution Implementation

This chapter describes the details of the solution implementation. First, the anno-

tation of the Ada grammar is described. Next, the interfaces developed between the Gen

software and the ALIANT Ada programs are presented, followed by a discussion of the

ALIANT prototype development.

4.1 Grammar Annotation

As shown in the previous chapter, the grammar annotation is a manual process.

Although some portions could possibly be automated, the only automated aid used in

annotating the grammar was that provided by a word processor's global "find and replace"

feature. Such a feature was initially used to change all occurrences of "::=" in the Ada

grammar to the Gen equivalent "=". Appendix A contains a summary of the Gen input

requirements.

Although it was originally thought that a literal subset of the Ada grammar would

be used for initial development, it proved to be more difficult to pick out the productions

that would be used for one subset, only to add them in late:. The solution to this problem

was to leave all "left-hand sides" (LILS) of productions intact but to "short-cut" the "right-

hand sides" (RIIS) by replacing all RIIS containing terminal symbols by the corresponding

LIS in quotes. This causes Gen to output the names of the LIIS if these productions are

enceunterec (luring test c .ase gecr.tion. Prod u ctions contain Ig only nontr- ihnaIs were

already in the proper format once the "::=" sign was replaced by the "=" sign, and the

Gen randomness operator, "%", was added to each alternative symbol, "I". For hIuS

4-1

that span more than one line, enclosing parentheses are required for Gen. For consistency

and clarity, the enclosing parentheses were used for all production's RHS. The following

examples show how this was done. The Ada case-statement production,

case-statement
case expression is

case-statement-alternative
{case-statement-alternative}

end case;

was replaced by the following statement:

case-statement ("casestatement")

The Ada library-unit-body production,

library-unit-body ::= subprogram-body I package-body

was simply changed to the following statement:

libraryunit-body = (subprogram-body I % package-body)

The Gen randomness construct, "%", causes one of the alternatives to be chosen with a

probability equal to the other alternatives.

In some cases, additional productions had to be added to model the zero or more

notation found in the Ada grammar. For example, the highest level production in the Ada

grammar, compilation, uses the zero or more notation as shown below:

compilation : := {compilation-unit}

4-2

The Geni compatible format of the compilation production usecd in this research is:

compilation = ("START-COMPILATION:
("" I % compilation-unit more-units) ":END.COMPILATION \n")

more-units = ("" I . compilat dn-unit more-units)

The "START-COMPILATION: " and ":ENDCOMPILATION \n" strings were

added to cause Gen to output clearly marked compilation test cases on separate lines.

This feature simplifies visual analysis of the Gen output and also provides a means for the

ALIANT prototype analysis programs to identify the start and end of each compilation

test case.

The completely annotated Gen compatible granmar, using the method described

above, is provided in Appendix E.1. Unfortunately, this first method does not generate

detailed test cases. Since most of the productions are simplified on the RHS, the test cases

produced are at a very high level. Most of the productions are never reached during test

case generation. To demonstrate how the grammar can be modified to provide more detail,

another annotated gram.,,ar was produced. This second version, shown in Appendix E.2,

expands several of the productions that previously were reduced to a single quoted string

on the RHS. For example, the Ada production for gcneric-instantiation appears as follows

in the Ada grammar:

generic- instantiation
package identifier is

new generic-packagename [genericactual-part];

] procedure identifier is
new genericprocedure-name [generic-actual-part];

4-3

I function designator is
new generic-function-name [generic-actual-part];

Since this research was not interested in the actual genci-ation of the nonterminal symbols

in the production above, the primary features mentioned in Chapter I were used to an-

notate the grammar. These "pseudo-nonterminals" yielded the following Gen compatible

production:

generic-instantiation = (("gen-function-instantiation 1 ',
"gen-package-instantiation "] "gen-procedure-instantiation " I
"gen-subprog-instantiation ") ("" I % genaric-actual-part))

Using the Gen randomness construct, "%", without any numbers means each alternative

will be chosen with a probability equal to the other alternatives. An equivalent production

using specified probabilities would have the integer 25 following each of the first three

percent signs, and the integer 50 following the last percent sign. The production above

provides more detail than the previous "short-cut" version:

generic.instantiation = ("generic.instantiation)

The results and analysis of generating test cases using both Gci grammars is discussed in

the next chapter.

j.2 Ge n to ALL4NT lncrfacc

With the annotated grammars completed, the next step in the ALIANT prototype

implementation was determining how the output from Gen would be input to the Ada

4-4

programs for analysis. Since the Gen program is a strictly "batch" operation, the UNIX

redirection and piping capabilities were chosen as the first interface between Gen and the

other programs. The UNIX redirection and piping features allow the transfer of data

between files and programs without user intervention and are frequently used in script

files that are executed in "batch" mode. As the next section will describe in more detail,

the analysis part of the ALIANT prototype was initially conceived as a batch operation

as well, so the use of redirection and piping was a good choice. The following command

line illustrates the use of redirection ("<") to direct an input grammar file (adagen.gen)

into Gen (gen.exe), and piping ("I") to send the Gen output to the ALIANT Ada analysis

programs:

gen.exe < adagen.gen I aliant-driver.exe

This method of interfacing the Gen output to the ALIANT analysis programs worked

fine in the batch mode of operations. When the evolving prototype of the ALIANT analysis

programs led to interactive input requirements, another method had to be employed. The

piping of Gen output to the ALIANT driver prevented the ALIANT analysis programs from

getting interactivc input from the keyboard. All input had to come from the Gen program.

The alternative was to output the Gen test cases to an intermediate file and have the

ALIANT driver open the file during execution. This method would also allow interactive

entry from the keyboard. The second method assumed that the last line of the input

grammar file would contain the generation statement indicating how many compilations to

generate (see Appendix A for a review of the Gen input grammar format). Unfortunately,

this meant the number of combinations was "hard-coded" within the grammar and had to

4-5

be manually changed before each execution with a different number of combinations. This

inconvenience led to further improvements in the interface implementation.

Through an iterative prototyping process, several detailed requirements were eventu-

ally identified for a flexible and user friendly input to the ALIANT prototype. Figure 4.1

identifies the klxy requirements. The method chosen to implement all of these requirements

was a UNIX shell script. Appendix D.1 shows the commented shell script that implements

each user input interface requirement. A dataflow diagram illustrating the operation of

the shell script is provided in Figure 4.2. In the diagram, step A must terminate normally

before step B will execute. Each rectangle represents a file, keyboard, or screen as indi-

cated. The rounded squares represent processes performed by independent programs or

UNIX utilities as detailed in the shell script. A description of the various files mentioned

in this diagram and throughout this chapter can be found in Figure 4.3.

4.3 ALIANT Prototype Development

The ALIANT analysis programs were implemented using an iterative rapid proto-

typing approach. Using the high-level design presented in the previous chapter, an initial

prototype was developed. From this initial prototype, features were modified and new ones

added as detailed implementation decisions were made. Figure 4.4 is an object-oriented

diagram of the Ada portion of the ALIANT prototype final implementation. The de-

pendencies between the various Ada packages and driver subprogram are indicated with

arrows. For clarity, the dependencies involving two standard library packages, TextJO

and Math, are not shown. TextIO is used by each compilation unit except LexPkg,

while Math is only required by Parameter'Pkg. The corresponding documented source

4-6

* The A.,;ANT prototype will be executed with a single command and up to three
command-line parameters.

1. The root of the filename of the Gen input grammar without the generation
statement (i.e., this parameter would be adagenl for a filename adagenl.gen).

2. The number of compilation combinations to generate. This parameter will be
used to create a generation statement in the input grammar.

3. An optional batch input filename that will allow the user to execute an ALIANT
session in batch mode with the output going to a default file.

* Error checking will be performed on input parameters and descriptive error messages
generated as necessary.

* A Gen generation statement for the requested number of combinations will be ap-
pended to a copy of the input grammar and submittea ,, the Gen program.

* The number of requested combinations will be passed, via a file, to the ALIANT Ada
programs for creation of required run-time memory space.

e If the Gen program fails to execute normally for any reason, the ALIANT analysis
programs will not be allowed to execute.

Figure 4.1. ALIANT Prototype Requirements

4-7

Annotated
Grammar APPEND GENERATE

generate' COMBINATIONS

Number of STATEMENT (gen.exe*)

Combinations
(user input)

gen-out

STEP A
gtemp

STEP B

STORE ANALYZE

NUMBER OF COMBINATIONS

COMBINATIONS (aliant-driver*)

Interactive Screen Output
lex.spec or or

Batch Input alnt-out

F -gure 4.2. Executing ALIANT Prototype

4-8

afis.db Database file produced by ALIANT which contains a record for each selected
combination. Each record consists of a unique identification number and a bit array
indicating which features are included in the combination (Appendix F.4).

aliant.a ALIANT Ada source code (Appendix D.2).

aliant-driver.exe* Executable ALIANT Ada code.

alnt-out Output file used when ALIANT is executed in batch mode (Appendix F.2).

<filename> User specified filename for batch input to ALIANT. It contains an entry per
line corresponding to the user prompts that will be generated for a specific batch
execution (Appendix F.2).

gen.exe* Executable C language Gen program.

gen-out File containing output from Gen that is read in by the ALIANT analysis pro-
grams (Appendix F.4).

g.temp File used to build the input to Gen containing a copy of <root>.gen appended
with the user specified generation statement. After Gen execution is terminated,
this file is used to pass the user specified number of combinations to the ALIANT
analysis programs (Appendix F.A).

lex-spec Lex specification that is automatically generated by the mklspec specified pro-
gram. The program generated from lex-spec is called as a subroutine (yylex) from
the ALIANT analysis driver program (Appendix C.2).

mkJspec Lex specification and C driver program that is used to create the program
that generates the lex.spec Lex specification from the <root>.gen file. The program
specified by mklspec extracts all Ada nonterminal symbols and pseudo-nonterminals
and formats the Lex specification that will identify expected characters and strings
output by Gen (Appendix C.3).

<root>.gen Input grammar for Gen (Appendix E).

runa* Executable UNIX shell script used to run ALIANT (Appendix D.1).

yylex File containing the object code of the compiled C-program generated by Lex from
lex-spec. This object code is linked with the ALIANT Ada programs using pragma
interface (Appendix C.1).

Figure 4.3. ALIANT Prototype File Descriptions

4-9

code is provided in Appendix D.2. Figure 4.5 provides a tree structure diagram showing

the relationships of the various subprograms that make up the ALIANT Ada code. The

remainder of this section describes the iterative development of this final version of the

ALIANT prototype.

The initial ALIANT prototype was batch oriented with required parameters "hard-

coded" in the ParameterPkg specification. The first version did not have a Features-Pkg,

which will be described later. The LexPkg contains the interface to the Yylex lexical

analyzer program that returns integer values for each nonterminal or pseudo-nonterminal

found in the input file from Gen (see Appendix C for a full description of how Lex is used

in this prototype). The first prototype did not use the Opengen and Closegen routines

shown in Figure 4.4 since the output from Gen was being "piped" through the standard

input file. The MatrixPkg provides encapsulation of the storage matrix that is used

to tabulate the feature occurrences in each combination. A two-dimensional matrix was

chosen for simplicity and speed. In this initial prototype, the maximum size of the matrix

was determined before compile time based on the expected number of combinations and

features that would be found. Although dynamic storage, using run-time allocated memory,

would have provided the most optimal use of memory and allowed growth "without bound",

the speed factor was considered most important; and the use of extra memory for the

duration of the ALIANT execution was not considered a problem for this data structure.

Figure 4.6 contains the descriptions of each of the major routines in the Matrixkg which

show how the matrix is used -nd why high-speed access is desired.

The ALIANTDriver controls the operation of the ALIANT prototype. The following

pseudo- code (Icbcribes the algorithm used to process the feature combinations produced by

4-10

MATRIX-PKG - PARAMETEILPKG

Combination-Matrix Max-Features

Initialize-M4atrix Max..Coinbinations)

Start-Combinat:ion] Get-Max-eatures

Count Feature Getjvlax-Cob

Displa-Mat EATURES-PKG
I Features..Table

Load-reatures.Table

LEX-PKGGet-eatures

I ~ALIANT -Driver

Figirs 4.4. ALHA NT Objpet-Orient-od Description

4-11

Get Max Features

- Opengen

Initialize Matrix

Load Features Table

- Yylex

- Start Combination

- Count Feature

- End Combination

ALIANT
Closegen

Driver Screen
Delay

-Get Feature
AL-ANT Display Get

ALuN Matrix Check UserWr'apup - aigUe
Paging Input

-Get User Input

Load Screen
Database Delay

Matrix Pkg Get Max Features
(declare part)-Get Max Combinations

Features Pkg
(declare part) Get Max Features

Figure 4.5. ALIANT Structure Diagram

4-12

Initialize-Matrix This procedure simply zeros out the combination matrix. There are
no parameters.

StartCombination This procedure increments counters and subscripts to start tabula-
tion for a new combination. There are no parameters.

Count-Feature This procedure increments the feature counter for the current combina-
tion being tabulated. An input parameter provides the feature number subscript for
the combination matrix, while the cui'rent cornbination package variable provides the
other subscript.

End-Combination This procedure is called when the end of a combination is identified.
Tests are performed to determine if this combination is a "null" combination that
does not contain any features or is a duplicate of a previous combination. Two
combinations are duplicates if both corresponding feature counts are zero or non-zero
at the same time. If the current combination is in fact null or duplicate, appropriate
counters are incremented or decremented as necessary and the current row of the
combination matrix is zeroed out. The tests for duplicate combinations requires
comparisons between the current combination and all previous combinations. This
is where the speed factor is most important.

Display..Matrix This procedure displays the contents of the combination matrix. The
initial prototype simply displayed the count totals for each feature number by combi-
nation. Additional features were added as described in later portions of this chapter.

Load-Database This procedure was added in later iterations of the ALIANT prototype.
If this option is chosen, ALIANT will output the selected combiliations to a file in
"bit matrix" format, as described in the previous chapter.

Figure 4.6. MatrixPkg Procedure Descriptions

4-13

Gen. Note that this pseudo-code includes all features implemented in the final prototype,

some which haven't been described yet.

begin ALIANTDriver
call MatrixPkg. InitializeMatrix
call FeaturesPkg.LoadFeaturesTable
call LexPkg. Opengen
call LexPkg.Yylex (return Token)
while (not end of Gen input file) loop

case Token is

when feature token =>
call MatrixPkg.CountFeature (send Token)

when start token =>
call MatrixPkg.StartCombination

when end token =>
call MatrixPkg. EndCombination

when others =>

print error message
end case
call LexPkg.Yylex (return Token)

end while loop
call LexPkg.CloseGen
call MatrixPkg. LoadDatabase

end ALIANTDriver

The initial ALIANT prototype verified that the interfaces between the Gen program,

Lex subroutines and Ada analysis programs would work as expected. These preliminary

tests revealed a requirement to increase the size of an output buffer in the Gen software to

handle some of the larger test cases. Other than this minor adjustment, the Gen software

was not modified in any way to meet the requirements of ALIANT.

The initial prototype also revealed that the interface between the Yylex routine and

the Ada code required some unexpected modifications to the Yylex source code and the

Verdix Ada library. The Yylex routine is created using a utility program called Lex. As

4-14

described in Appendix C, the Lex specification for identifying Ada language features is

processed by the Lex program to generate a C program in a file called lex.yy.c. This file

is then compiled to make an executable routine by itself or to interface to other programs.

For some unknown reason, Lex includes reference to a C subroutine that is not included in

lex.yy.c. When the object code generated from lex.yy.c is linked with the Ada programs, the

Ada loader generates an eiror message. To eliminate this error message, it was necessary

to manually remove the invalid reference from lex.yy.c before compiling it. The addition of

a link name in the Verdix Ada library was required to tell the Ada linker where to find the

Yylex object code. For the initial ALIANT prototype, the following process was developed

to establish the Yylex to Ada interface (see Figure 4.7 and Figure 4.8):

1. The Lex specification in lex-spec is used to produce the yylex source code in lex.yy.c
by executing the following command: "lex lex-spec".

2. The C source code in lex yy.c is modified to remove the undefined reference to yywrap
(see Figure 4.9).

3. The modified C source code in lex.yy.c is compiled as follows to produce linkable
object code in lex.yy.o: "cc -c lex.yy.c".

4. The file lex.yy.o is renamed yylex and the following entry is manually inserted into
the Verdix Ada ada.lib file: "WITJI1:LINK:yylex:". This entry tells the Ada linker
where to find the yylex program mentioned in the LexPkg using pragma interface.

5. The compiled Ada packages and driver are linked together with the yylex routine
using the Verdix Ada command "a.ld aliant-driver -o aliant-driver.exe". The output
name was arbitrarily chosen to easily identify the executable driver file.

Having resolved the technical issues just mentioned, the next iteration of the ALIANT

prototype development led to the creation of the FeatureoPkg. In the first prototype,

the Display.2vlatrix procedure was just displaying the feature numbers and associated

count totals. To translate the feature numbers back into the more informative Ada

4-15

CREATrE
lex-spec - ~ PROGRAM ... lex.yy.c

(Lex)

COMPILE modified MODIFEXY.

PROGRA N1 lex.yy.c (manual)

CRENAME

lex.yy.o FILE ---- yylex

(manual)

Figure 4.7. Creating Yylex Object Code

4-16

MODIFY

ada.lib LIBRARY adz lib

________________(manual)
(with link: yylex)

LINK

aliant-driver* ___ Ada AND yylex

yylex

COMPILE Ada
aliant.a Ada object code

_____________PA C KA GES ______

Figure 4.8. Creating Executable ALIANT-Driver

4-17

jut yyleng; extern char yyter-c[];
jut yymarfg;
extern char *yysptr, yysbuf[j;
jut yytchar;
FILE *yyiu, 4yyout {fstdout}; /** REMOVED 'z stdin}' FROM yyin FOR ALIANT*/
extern jut yyneno;
struct yysvf {
struct yywork *yystoff;
struct yysvf *yyother;
jut *yystops;};
struct yysvf *yyestate;
extern struct yysvf yysvecfl, *yybgin;
define YYNEWLINE :10

/*************ADDED opengen AND closegen FOR ALIANT **#******

opengeno){
yyin = fopeu("lgen-out", 'r");

closegeuo{
fclose~yyiu);

yyiexo{
jut nstr; extern jut yyprevious;
while((nstr = yylookC)) >= 0)
yyfussy: switch(nstr){
case 0:
returuCO); break; /**REMOVED 'if(yywrapO)' FOR PLIANT**/
case 1:

{return(1);}
break;
case 2:

{ returnC 2);}
break;

Figure 4.9. Modifications to lex.yy.c Program

4-18

nonterminal/pscudo-noiterminal symbols, a look-up table containing the desired infor-

mation is required. Rather than hard-code the table in the Ada source code, procedures

were added to read in the information directly from the Lex specification (lex.spec) that

wa3 used to create the LexPkg.Yylex function. This method guarantees the look-up table

matches the feature tokens being returned by the Yylex function. Whenever a new lex-spec

and Yylex are generated, the Ada programs do not have to be recompiled; only re-linked

with the Yylex code. The Features_.Pkg is described in Figure 4.10.

LoadFeat ures_-Table This procedure extracts the nontermi nal and pseudo-nonterminal
symbols from the lex-spec file and stores them in an array of character strings.

Get-Feature This function accepts a feature number as a parameter and returns the
corresponding feature character string from the features table.

Figure 4.10. FeaturesPkg Procedure Descriptions

While developing the FeaturesPkg, it became apparent that the creation of the

lex-spec file (Appendix C.2) could be automated using another Lex specification. All

that was needed was a Lex specification that would recognize the format of nonterminal

and pseudo-nonterminal strings within the annotated grammar, and a driver program to

generate the lex.spec file. Appendix C.3 shows the resulting specification called mkispec.

Note that the C driver prograom is included in the same file to eliminate additional interface

requirements. The piocess to create the lex-spec file is similar to the process used to create

the Yylex program from lex.spec (see Figure 4.11):

1. The Lex specification and main driver in mkispec is used to produce the source code
in lex.yy.c by executing the following command: "lex mklspec".

2. The C source code in lex.yy.c is compiled and linked as follows to produce an exe-
cutable stand-alone program in a.out*: "cc lex.yy.c -11".

4-19

3. The lexspec file is created by executing the following command: "a.out* < ada-
gen.gen > lex-spec". In this example, the annotated grammar in adagen.gen is
redirected as input to a.out* and the output from a.out* is redirected to lex-spec.

To further enhance the flexibility of the ALIANT prototype, and defer the declaration

of the combination matrix from compile time until run-time, methods were developed to

input the maximum number of features and maximum number of combinations during

program execution. The first way this was attempted was by adding interactive prompts

within the body of the ParameterPkg. Appropriate pragmas were used to make sure the

Parameterkg was elaborated before any other compilation units that depended on it.

Therefore, the values input in the Parameterkg body would be available in data structure

declarations throughout the ALIANT prototype. Unfortunately, this first attempt revealed

another technical issue that had to be resolved: how to explicitly open and close the Gen

output file.

The initial prototype's use of piping to transfer the Gen output data into the

ALIANTDriver prevented the user from inputting information from the keyboard. The

alternative was to redirect the Gen output to a file that would be explicitly opened from

the ALIANT.Driver. This would "free-up" the standard input for interactive keyboard en-

tries. The eventual solution to this problem required further modifications to the lex.yy.c

file that was used to create the Yylex function. The following additional lex.yy.c modifi-

cations, plus the addition of Opengen and Closegen to the LexPkg, solved the standard

input problem.

1. The previously modified C source code in lex.yy.c (generated from lex-spec) is further
modified as shown in Figure 4.9. The initialization of file yyin to s!. .. dard input is

4-20

ANNOTATE
Ada GAMRAnnotated

Grammar .GRMA Grammar
________________(manual)

iik-Ispec PROGRAM

_____ _____ ____(Lex)

GENERATE

LEX-SPECV lex.yy.c

COMPILE

AND LINK a.out* lex-spec

PROGRAM

Figure 4.11. Creating lex..spec Lex Specification

4-21

changed so that yyin is uninitia~lized. Two subroutines, opengen and closegen, are
added just before the yylex procedure.

2. The lex.yy.c is compiled as before with "cc -c lex.yy.c" to produce lex.yy.o.

3. The file lex.yy.o is renamed yylex as before and relinked with the Ada programs.

The interactive capability allowed the user to input the number of features and

number of combinations at run-time, but a better method is to extract this information

automatically from other sources. The lessons learned in developing the Features.kg

were applied to the problem of getting the number of features without user input. By

using a similar technique as the LoadFeat tresTable procedure, the ParameterPkg body

was modified to read in the lex-spec file to count the number of features. This technique

would further guarantee that the maximum number of features was synchronized with the

Yylex function and the FeaturesTable. To get the number of combinations automatically

required an interface file between the shell script and the Ada programs.

As described in the previous section on the Gen to ALIANT interface, the UNIX

shell script input was eventually developed to allow the user to input a parameter for the

number of Gen combinations to be generated. This enhancement led to an automatic

technique to input the maximum number of combinations. The number of combinations

that is used to generate the Gen test cases is passed to the ALIANT programs through

the g-temp file. Note that the maximum combinations parameter is used to declare the

size of the combination matrix. Therefore it should be as small as possible to contain the

expected number of "unique" combinations. For example, of 5000 combinations generated

using the Adageni grammar in Appendix E.1, 2512 combinations were null, while 2296

combinations were duplicates. This leaves only 192 combinations that had to be stored in

4-22

* the combination matrix. In this example, the required space is only 4 percent of the total

number of combinations generated.

For very large test runs, the difference between the number of generated combina-

tions and the number that are actually put in the matrix can be considerable. Therefore,

the number in the g-temp file is much larger than the expected number of combinations

to be stored. By observing several test runs over a wide range of combination numbers, a

mathematical function was developed that calculates an approximation for the maximum

number of combinations. The calculation is based on the number input from gtemp. Ta-

ble 4.1 shows a comparison of the estimated versus actual number of stored combinations;

where x is the number input from g-temp, and y is the estimate used to determine one

dimension of the ombination matrix. Two different values of the coefficient c are shown.

For the simple grammar shown in Appendix E.1, a coefficient of 17 is adequate. But for

the more complex Adagen2 grammar of Appendix E.2, iii which there are no null combi-

nations generated, a coefficient of 1200 is required. Although the larger coefficient results

in "wasted" space for smaller numbers of combinations, it stil yields a signficant space

savings for the larger numbers. Instead of developing a much more complicated function

calculation to obtain closer approximations for all values, the simple y = \/ function

was adopted for demonstration purposes in this prototype. For this particular grammar,

the estimate is sufficient up to about 10,000 combinations. A grammar of different com-

plexity or larger numbers of combinations may require an increase in the x coefficient to

make sure the combination matrix is largo noiigh.

With the introduction of the interactive capability, several new features were iter-

atively added as the ALIANT prototype evolved. The most significant of these added

4-23

Table 4.1. Estimated vs. Actual Number of Combinations

g-temp c = 17 Adageni c = 1200 Adagen2

100 41 38 346 69

200 58 54 489 122

300 71 68 600 171

400 82 77 692 217

500 92 84 774 264

600 100 91 848 296

700 109 96 916 342

800 116 100 979 389

900 123 107 1039 433

1000 130 112 1095 480

2000 184 139 1549 827

3000 225 164 1897 1192

4000 260 178 2190 1521

5000 291 192 2449 1847

10000 412 218 3464 3452

4-24

features was the ability to specify thresholds for selective displaying/storing of the gen-

erated feature combinations. In response to on-screen prompts, the user of the ALIANT

prototype may choose to display/store feature combinations based on the number of du-

plicates each combination had and the number of features in each combination. The user

is prompted to enter the two threshold values that will be used to select the desired com-

binations. Any combination that has an equal or greater number of duplications as the

duplication threshold value, or an cqual or less number of features as the feature threshold,

is chosen for display or loading into the database. While in an ALIANT session, the user

may repeatedly try different threshold values to see how many combinations are chosen.

The number of combinations that satisfy the specified threshold values is displayed first.

Then the user is given the opportunity to view the combinations with or without on-screen

paging, or not at all. After the user is finished selecting/displaying combinations, he/she

may select combinations to be loaded into the AFIS database file. The thresholds are

used as before to select which combinations are output to the database file. If the batch

input option is used to execute an ALIANT session, the desired sequence of user inputs

is stored in an ASCII input file and redirected into ALIANT from within the UNIX shell

script. Appendix F gives detailed operating instructions and screen display examples of

the ALIANT prototype.

The ALIANT prototype expects several executable/data files to be available in the

same directory. In some cases, the versions of these files must also agree. For example,

the Yylex subroutine is generated for a particular set of features in an annotated grammar.

If the grammar is modified to include additional features, they will not be recognized as

valid, until a new Yylex program is generated. If certain files are missing, the standard

4-25

Ada run-time abort messages would not clearly indicate where the problem occurred.

Therefore, several exception conditions were identified and descriptive error messages were

developed to guide the user to the cause of some of the common problems that could arise.

In addition to the errors detected within the Ada programs, the UNIX shell script does

preliminary error checking of the input parameters to avoid unnecessary execution of the

ALIANT prototype. Figure 4.12 summarizes the types of errors that are detected by the

entire prototype.

This chapter presented a description of the iterative method used to develop the

ALIANT prototype. Initial versions helped confirm necessary interfaces would work. Later

versions added the full functionality described in the original design of the previous chapter.

The next chapter will analyze the operation of the ALIANT prototype.

4-26

WVrong numiber of input arguments If too mrany, or too few, llljpft argullenits are pro-
vided to the shell script. an error maessage is generated showing the proper input
format.

Non-existent filenamies for input arguments [Ca non-existeut Gen iput file or batch
input file is provided, an error message is generated by the shell script and execution
is terminated.

Inv~alid numiber of combinations If the argumrent fo the uumber oif coinbi inati ons to
generate is not greater than zero, the shell script genierates an error mes5sage and
terminates execution.

Gen programn abort If the (3on programn doer, not tertniuak! iormialiy, tile
ALIANT-Driver is not allowed to execute. This prevents aualysis of p~artial or 11on-
existent Gen output.

Errors concerning the Iex-spee file If the lex-spec file is non-existent or the contents
do not match the expected format, error niessages are genclated front within the
ALIANrr code. The lex-spcc file is opened durig the iitialization of the Paramie-
ter..Plg body and duringp the Load-Features-Table execution. The geiteratedl error
messages indicate at which location the error occurred.

Errors concerning the g-.ternp, file Although unlikely, the g-temp file may contain er-
rors when it iL opened by the ALIANT code. If so, error messages are generated for
a non-existent file or one in which the number of combinations is not in the expected
forniat. Error miessages are also generated if the numrber of com bin atiois exceeds the
predefined constraint range.

'T~oo m-any generated combinations Siii-e a fuiiction is used to caiculate the expected

matrix storage requirements, it is possible that the space wvill be exceeded. If this
happen.,, an errui message is generated before the partial m-atrix of combinations is
made available for user display.

Errors concerning thie gen-out file If the format of the gcn-out file from Gen has been
conta minated, an qrroi miessage is generated. This error message is only generated
if a. feature is identified befo~re the start combination symbol is identified.

U~ser input error's If the user inputs invalid threshold values, an error message is briefly
displayed on the screen a.nd then arxother input prompt is p~rovided. If the user inputs
come, fromi a batch file, it A;. possible the wrong number of inputs are provided and
an end-of-file condition will be tea-ched on staindardi input. If this occurs, a specific
error mnessage is generated indicating the possible cause.

Undefined feature token 1If a Gexi iput grammar is used that contains new features
that are not in the current Yylex routine, an infformnational error miessage will be
generated vwhile the combinations are analyzed.

Figure 4.12. AIANT Prototype Error Detection

4-27

V. Test and Analysis

The purpose of this chapter is to analyze the results of ALIANT prototype testing.

First, the overall test objectives are presented. Then, the grammar test procedures are

described. Next, the test results, using two versions of the annotated Ada grammar, are

presented. The test data show how the degree of grammar complexity affects the number

and type of feature combinations the prototype produces. Finally, the results of error-

checking analysis are provided. This analysis verifies the prototype responds to error

colditioiis as designed; providing the user with an indication of how the problem can be

corrected.

5.1 Test Objectives

The primary objectives of ALIANT prototype testing are to

* Verify the prototype is correctly generating and identifying Ada. feature combinations
according to the input annotated grammar.

* Gather performance statistics for ALIANT execution using two versions of a grammar
and a range of values for numbers of combinations, duplication thresholds, and feature
thresholds.

* Verify the prototype error detection and message display features work as designed.

The first objective is not explicitly documented elsewhere in this chapter. Initial tests

were accomplished in which the Gen output was visually inspected to verify the proper

output format. Other independent tests were used to confirm the randomness constructs

did poddce the desired selection of alternatives. For example, given a production in

which one alternative is to be chosen 30 percent of the time, the tests confirmed the

5-1

specified alternative did appear 30 percent of the time. The proportions were more accurate

for larger numbers cf generated comnbiinationb. Other tests were conducted to manually

compare the ALIANT processing statistics and seiected combinations with the actual Geu

output. These tests confirmed the Ada code was correctly counting features, identifying

null and duplicate combinations, etc.

The second test objective was designed not only to gather data for later analysis,

but also to "stress test" the ALIANT prototype. By uing grammar versions of different

complexity, and a wide range of combination number, and threshold values, any prototype

deficiencies should b(, uncovered. The 'alues ued for testing were designed to cover the

expected boundary values, as well as selected values in between. The maximum number of

combinations tested, 10000, was chosen somewhat arbitrarily due to the ALIANT execution

time and memory requirements. These larger test runs took over an hour to complete. The

chosen combination numbers were sufficient to establish clear trends for analysis.

The third test objective was satisfied by setting up a specific error condition for each

category of ALIANT error detection capability. The final section of this chapter presents

the results of these specific tests.

5.2 Grammar Test Setup

Two versions of an annotated Ada grammar were chosen for testing the ALIANT

prototype (see Appendix E). As described in the previous chapter, the first grammar

(Adagen t) is annotated very simply. Any productions that had terminal symbols on the

right hand sides were reduced to a character string in quotation marks. No weighting values

were absigned to any of the Gen randomness constructs, which made any alternative equally

5-2

likely in a given production. The second grammar (Adagen2) is more complex. This

grammar was annotated to allow the generation of more detailed feature combinations.

The 297 primary features used as a preliminary "filter" to the Program Analysis Tool

(PAT) were used as a guide in annotating the Adagen2 grammar (the primary features

were discussed in Chapter I). More realistic alternative probabilities were added to the

Gen randomness constructs to guide the generation of test cases. The added probabilities

were "more realistic" in the sense that more commonly used Ada features were given a

higher probability of occurring. The choices for the alternative probabilities are based on

the subjective judgement of the individual annotating the grammar. The use of objective

statistical data would result in the "most realistic" grammar annotation.

The testing process with these grammars was accomplished by using the ALIANT

batch input option. A batch file was set up to accumulate test data for 11 different pairs of

duplicate and feature threshold values. Recall that the duplicate threshold indicates the

minimum number of duplicates a combination must have to qualify for selection, while the

feature threshold indicates the maximum number of features a combination can contain

to qualify for selection. The 11 test selections are shown in Table 5.1. The first five

selections, A through E, were designed to show how the number of combinations changed

by duplication threshold, while the feature threshold was constant. The feature threshold

was maintained at 100, to avoid eliminating combinations based on that factor, as the

duplication threshold was varied from 4 to 0. The next five test selections, F through J,

w.ere dezigned to show th ceffect of changing the feature thiebhuld ,luu. Th dup'ltilit

threshold of 0 made sure no combinations were eliminated due to that factor while the

feature threshold was varied from 50 to 10. The final test option, K, was chosen to

5-3

illustrate a selection of recommended feature combinations to test. This selection chooses

those combinations that have a duplicate count greater than or equal to 2, and a feature

count less than or equal to 20. In other words, a combination of 20 features that occurred

3 times would be selected; but a combination of 20 features that occurred only 2 times

would not be selected.

A UNIX shell script was created to execute the batch input for 15 different "numbers

of combinations", ranging from 100 to 10000 combinations. In other words, the ALIANT

batch input file containing the appropriate user input entries for the 11 different pairs of

threshold values was executed first for 100 generated combinations, then 200 combina-

tions, and so on up to 10000 combinations (after 1000 combinations, the saccessive tests

increased 1000 combinations at a time). The shell script automatically moved the output

from "alntout" to a unique filename so the information from one test run would not be

overwritten by subsequent test runs. The result'ng data for all test selections and input

combinations are presented in the following sections.

5.3 Adageni Grammar Results

The tabulated test data for the Adagenl grammar is provided in Table 5.2. The first

column is the number of requested combinations input to the ALIANT prototype. The

next eleven columns, A through K, contain the number of combinations that satisfied each

pair of test selection criteria described in the previous section. The final three columns

contain the ALIANT summary totals for null, duplicate, and resulting combinations.

Since the numbers in columns E through J are constant, the data show that Adagenl

does not produce any combinations containing more than 10 features. If there was at least

5-4

Table 5.1. ALIANT Test Selection Options

TEST SELECTIONS

Selection Duplicate Threshold Feature Threshold

A 4 100

B 3 100

C 2 100

D 1 100

E 0 100

F 0 50

G 0 40

II0 30

10 20

J0 10

K 2 20

5-5

Table 5.2. Adagenl Grammar Test Results

Adagenl Test Data

Test Selections

Comb A B C D E F G

100 1 2 4 11 38 38 38

N90 5 9 14 19 54 54 54

300 7 13 20 36 68 68 68

400 12 17 24 43 77 77 77

500 17 21 30 49 84 84 84

600 18 24 37 56 91 91 91

700 21 26 43 59 96 96 96

800 23 33 48 62 100 100 100

900 25 35 50 66 107 107 " 07

1000 29 38 53 70 112 112 112

2000 53 63 77 98 139 139 139

3000 70 78 91 116 164 164 164

4000 80 93 107 128 178 178 178

5000 88 102 115 141 192 192 192

10000 122 131 158 182 218 218 218

5-6

Table 5.2. Adagenl Grammar Test Results (continued)

Adagenl Test Data (continued)

Test Selections Summary Totals

Comb H I J K Null Dup Res

100 38 38 38 4 43 19 38

200 54 54 54 14 95 51 54

300 68 68 68 20 140 92 68

400 77 77 77 24 194 129 77

500 84 84 84 30 243 173 84

600 91 91 91 37 293 216 91

700 96 96 96 43 349 255 96

800 100 100 100 48 398 302 100

900 107 107 107 50 444 349 107

1000 112 112 112 53 494 394 112

2000 139 139 139 77 1008 853 139

3000 164 164 164 91 1509 1327 164

4000 178 178 178 107 2011 1811 178

5000 192 192 192 115 2512 2296 192

10000 218 218 218 158 4972 4810 218

5-7

one combination with 11 features, the numbers in columns E through I would be one

greater than the number in column J. In fact, additional tests revealed the maximum

number of features per combination is 9. A visual examination of thc(Adagenl grammar

in Appendix E.1 confirms that only 9 features are produced by the following 21 "reachable"

productions:

subprogram-declaration C subprogram-specification)
subprogram-specification = ("subprogram-specification ")
subprogram-body = ("subprograin-body ")
package-declaration = (package-specification)
package-specification = ("package-specification ")
package-body = ("package-body ")
use-clause C "use-clause ")
compilation C "START-COMPILATION: "
("" I % compilation-unit more-units) ":ENDCOMPILATION \n")

more-units = ("" I %, compilation-unit more-units)
compilation-unit = (

context-clause library-unit
I % context-clause secondary-unit)

libraryunit = (
subprogram-declaration I % package-declaration
I % generic_1eclaration I %. generic-instantiation
! subprogram-body)

secondary-unit = (libraryunit-body I % subunit)
libraryunit-body C subprogram-body I % package-body)
context-clause =

"" I Y (with-clause % .. I Y use-clause more-use) context-clause))
more-use = ("" I % use-clause moreuse)
with-clause = ("with-clause ")
subunit = ("subunit ")
generic-declaration C generic-specification)
generic-specification C
generic-formalpart subprogram-specification

I % generic-formal-part package-specification)
generic-formal-part = ("generic.formalpart ")
generic.instantiation C "generic.instantiation ")

5-8

The "reachable" productions form a tree with the compilation production as the root and

the terminal productions as the leaves. Since a compilation is composed of zero or more

compilation-units, all 9 features can appear in a single combination.

The relative simplicity of Adageni combinations is indicated by the fact that there

are only 218 different combinations produced from 10000 attempts. Figure 5.1 gives a

graphic illustration of what is happening as more and more combinations are generated.

The graph plots the ALIANT summary totals for null, duplicate, and resulting combina-

tions as well as selected combinations for a specified pair of threshold values. Selected

combinations are usually a subset of all the resulting combinations if the threshold values

are chosen properly. Note that a duplication threshold equal to zero, and a feature thresh-

old equal to the maximum number of features will guarantee all resulting combinations

are selected. The null and duplicate combinations are growing at a steep linear rate, while

the resulting combinations are increasing much slower. Theoretically, the resulting combi-

nations should eventually reach a maximum or at least approach a maximum value. The

decreasing slope of the resulting combinations is an indication that such a maximum does

exist. The plotted slope of the selected combinations is decreasing as well. For the indi-

cated selection thresholds (Dup-2 Feature-20), the graph shows a much slower growth rate

for a subset of all generated combinations. The absolute maximum number of combina-

tions could be calculated, but the ALIANT prototype would spend a lot of time generating

mostly duplicates while attempting to exhaust all possibilities. For the rather simple Ada-

genI grammar, it is likely that exhaustive g teration of all possible feature combinations

could be achieved. Unfortunately, to be of any value to the ACVC testing effort, mucli more

5-9

complicated grammars must be annotated. The next section shows the corresponding test

results for the Adagen2 grammar.

Before presenting the Adagen2 testing results, an additional Adagenl demonstration

is provided. The output combinations produced by Adagenl can be reduced further by

modifying the compilation and more-units productions from this format:

compilation = ("START-COMPILATION: "

("" I Y. compilation-unit more-units) ":ENDCOMPILATION \n")
more-units = ("" I % compilation-unit more-units)

to this format:

compilation = ("START-COMPILATION:
("" I % 0 compilationunit moreunits) ":ENDCOMPILATION \n")

more-units = ("" I Y 100 compilation-unit - ce-units)

The addition of the randomness percentages 0 and 100 as indicated cause the grammar to

generate one compilation-unit per combination. Figure 5.2 shows the resulting data for this

modified Adageni grammar called "T-Adagenl". Note that the duplicate combinations

continue to grow at a higher rate than before, while the resulting combinations reaches

a peak value very early. In this case, the grammar can only generate a maximum of 24

different compilation-units. This actual maximum for the 9 features of the 21 "reachable"

productions in T-Adagenl is much less than an easily calculated least upper bound of

511. The least upper bound is determined by calculating the Dumber of combinations

of 9 features taken I at a time, 2 at a t.n'e, and co on up to 9 at a time. The sum of

these calculations, 511, is the least upper bound for this grammar. The reason the actual

5-10

Adageni Summary Totals
2500-]
2000 Null 4-

Duplicate-I-
Resulting -

Dup-2 Feature-20 -X**

1500

Gen.
Comb.

1000

500

0 ~~~)< ..XX.............X X......

0 500 1000 1500 2000 2500 3000 3500 4000
Requested Combinations

Figure 5.1. Adageni Summary Totals Graph

maximum number of combinations is much less than the calculated upper bound is that

many of the calculated combinations are not possible in actual practice. For example, a

withclause cannot appear alone in a combination.

5.4 Adagen2 Grammar Results

The tabulated test results for Adagen2 are provided in Table 5.3. The data is pre-

sented in the same manner as for Adagenl. The Adagen2 grammar did not generate any

null combinations since the randomness constructs were modified in the compilation pro-

duction. Rather than generate null combinations that ALIANT would only discard, the

Adagen2 grammar eliminated the zero option by using zero percent on the correspond-

ing alternative symbol. The elimination of null combinations causes many more resulting

combinations to be generated.

The added complexity of the Adagen2 grammar is apparcnt from the data in columns

F through J. The data in these columns indicate there are at least some combinations with

more than 50 features. Additional tests identified at least one combination with as many

as 67 features. Figure 5.3 shows the summary totals for the Adagen2 duplicate, resulting,

and selected combinations. The growth rate for all but the selected combinations (Dup-2

Feature-20) is much greater than what was noted for Adagenl. This indicates a theoretic

maximum is well beyond the reach of practicality, which was a premise for this research.

In other words, it is not practical to test all feature combinations. The growth rate for

the selected combinations is very similar to corresponding graph for Adageni. The growth

rate for this selected subset of all Adagen2 combinations is much lower than the overall

rate.

5-12

T-Adagenl Summary Totals
2500

2000 Duplicate 4~-
Resulting +

1500

Gen.
Comb.

1000

500

0 500 1000 1500 2000 2500 3000 3500 4000
Requested Combinations

F igure 5.2. T-Adagenl Summary Totals Graph

5-13

T'able 5.3. Aclagen2 Grammar est Results

Adagen2 Test Data

Test Selections

4 Coib A 13 c D E F

100 1 4 10 16 69 69) 67

200 9 11 16 27 122 122 119N

300 12 18 25 36 171 170 164

400 18 21 29 39 217 216 208

500 20 27 33 4.5 264 262 254

600 26 31 39 47 296 294 285

700 29 34 43 54 342 339 328

800 30 35 46 57 389 386 373

900 32 37 50 66 433 430 416

1000 35 40 51 69 480 477 460

2000 56 65 83 120 827 817 790

3000 69 79 105 156 1192 1181 1133

4000 79 9)5 132 196 1521 1508 1438

5000 92 110 160 221 1847 1832 1748

10000)56 178 2-29 322 342 48 324

5-14

Table 5.3. Adagen2 Grammar 'rest Results (continued)

Adagen2 Test Data (continued)

Test Selections Summary Totals

Comb H I J K Null Dup Res

100 62 47 43 10 0 31 69

200 106 81 68 16 0 78 122

300 147 111 92 25 0 129 171

400 187 146 121 29 0 183 217

500 227 174 144 33 0 236 264

600 251 190 155 39 0 304 296

700 281 214 171 43 0 358 342

800 321 243 191 46 0 411 389

900 354 269 211 50 0 467 433

1000 396 300 234 51 0 520 480

2000 675 498 377 83 0 1173 827

3000 965 705 522 105 0 1808 1192

4000 1207 853 606 132 0 2479 1521

5000 1466 1013 714 160 0 3153 1847

10000 2680 1773 1183 229 0 6548 3452

5-15

Adagen2 Summary Totals

2000 - Null 4-
Duplicate -+-
Resulting *-1-

Dup-2 Feature-20 -X-*

1500

Gen.
Comb.

1000

500

.. X..........

01 xxxxxxx...., L~
0 500 1000 1500 2000 2500 3000 3500 4000

Requested Combinations

Figure 5.3. Adagen2 Summiary Totals Graph

5-16

As was done with Adageni, a modified version of Adagen2 called "T-Adagen2" was

tested. This version of Adagen2 produces only one compilation-unit per combination.

Figure 5.4 shows the results. The resulting combinations are still growing at a much higher

rate than Adageni. Even with the reduced complexity of each combination, the overall

grammar complexity still makes the maximum value impractical to reach. Note that the

original Adagen2 grammar already had the more-units alternative percentage set at 90

percent which caused the null alternative to be chosen 90 percent of the time. Therefore,

setting this value to 100 percent did not result in a dramatic change between Adagen2 and

T-Adagen2, as was noted between Adagenl and T-Adagenl.

5.5 Error Condition Analysis

The normal operation of the ALIANT prototype was thoroughly tested while collect-

ing test data discussed so far in this chapter. Although some of the error-checking features

were verified during the course of this data collection, several special tests were required to

be sure all such features were working properly. The purpose of this section is to present

the results of a series of tests that confirmed the prototype error-checking worked as ex-

pected. In each case, the method used to produce an error is described, followed by the

results of the induced error.

Invalid parameters for runa shell script.

TEST 1: The runa shell script was invoked with no parameters.

RESULT: The following error message was displayed before the prototype was ter-
minated:

* Missing Gen filename and/or combinations argument(s), try again.

5-17

T-Adagen2 Summary Totals
2500 1

2000 - Duplicate 4-
Resulting -

1500

Gen.
Comb.

1000

0 500 1000 1500 2000 2500 3000 3500 4000
Requested Combinations

Figure 5.4. T-Adagen2 Summary rTtals Graph

5-18

* ---- Form~at, runa* fni num [fn2)
* ---- Where :fni.Sen is the Gen input file,
* ---------- - num iz the desired number of combinations, and
S----- -fn2 is an optional ALIANT batch input file.

TE ST 2: A non-existent iilenamne was provided for the Gen input file.
RESU LT: The following error message was displayed before the prototype was ter-
mninated:

* Gen filename provided does not exist and/or numbe-:
* of combiziatious providid not greater than 0, try again.

Gen program abort.

TEST 3: The r'una shell script waz invoked with valid parameters; but the Gen
executable file was not in the current directory. This test simulates any condition in
which the Gen software aborts before or during execution.

RESULT: The op'erating system produced an error message and the shell script
termihnated execution without runninig the ALIANT driver program.

-- Gen execution in progress --

gej21eXe*, No match.

e Errors concerning the lex-spec file.
TEST 4: The ALIANT prototype was executed with a non-existent lex-spec file.
RESULT: The following error mnessage was produced during execution of the Paramn-
eter-Pkg initialization. Note that an Ada runtime abort message was produced since
the ALIANT-Driver had not been elaborated yet. Normally, the ALJANT..Driver
will replace the systemn message with au ALIANT terminating message.

<Parameter-Pkg body>
NAME EXCEPTION ERR.OR RAISED WHILE
**TRYING TO OPEN LEX SPECIFICATION **

FILE. CHECK FILENAME IN PARAMETER
**PACKAGE AND CURRENT ;)!RECTORY. **

*MAIN PROGRAM ABANDONED -- EXCEPTION "FATAL-EXCEPTION" RAISED

TEST 5: The AJAANT prototy'pe was executed with an empty lex-spec file. This
test simulates a condition in which the lex-spec is p~resent but contains format errors.
RE S ULT: The folow.i e grrar rnesagc was pro d uccdU- duri ng executi on of th e P1aram-
eter..Rkg initialization. As in tile previous test, an Ada runtime abort message was
also produced.

5-19

<ParameterPkg body>
*** PREMATURE END-OF-FILE REACHED WHILE ***

*** READING LEX SPECIFICATION FILE. ***

*** CHECK FORMAT OF LEX SPECIFICATION. ***

** MAIN PROGRAM ABANDONED -- EXCEPTION "FATALEXCEPTION" RAISED

Errors concerning the g.temp file.

TEST 6: The ALIANTDriver is executed manually (without using the shell script)
with a non-existent gtemp file. This test demonstrates a condition that is unlikely
when using the shell script; but very likely if the ALIANT-Driver is used to process
a previously generated Gen output file.

RESULT: The f!llowing error messages were produced before the prototype was
terminated:

<ParameterPkg body>
*** NAME EXCEPTION ERROR RAISED WHILE ***

*** TRYING TO OPEN THE GEN COMBINATION ***

*** FILE. CHECK FILENAME IN PARAMETER ***

*** PACKAGE AND CURRENT DIRECTORY. ***

** MAIN PROGRAM ABANDONED -- EXCEPTION "FATAL-EXCEPTION" RAISED

TEST 7: The ALIANTDriver is executed manually with a null g-temp file.

RESULT: The following error messages were displayed before the prototype was
terminated:

<ParameterPkg body>
*** PREMATURE END-OF-FILE REACHED WHILE ***

*** READING GEN COMBINATION FILE. CHECK ***

*** FORMAT OF GEN COMBINATION FILE. ***

** MAIN PROGRAM ABANDONED -- EXCEPTION "FATAL-EXCEPTION" RAISED

TEST 8: The ALIANT prototype was executed with a "number of combinations" pa-
rameter that was larger than the hard-coded Parameter-Type in the ParameterPkg.

RESULT: The following messages were displayed before the prototype was termi-
nated:

<ParameterPkg body.2>
*** NUMBER OF COMBINATIONS IS OUT OF
*** RANGE. CHECK GEN COMBINATION FILE AND ***

*** PARAMETER TYPE IN PARAMETER PACKAGE. ***

** MAIN PROGRAM ABANDONED -- EXCEPTION "FATAL-EXCEPTION" RAISED

* Too many generated combinations.

TEST 9: The ALIANT prototype was executed with a "number of combinations"
parameter that would cause the calculated Max-Combinations to be exceeded.

RESULT: The following message was displayed before the remaining ALIANT screen-
faces were presented.

5-20

<MatrixPkg. StartCombination>
*** TOO MANY GEN COMBINATIONS. ***

*** PARTIAL RESULTS FOLLOW. ***

e Errors concerning the gen-out file.
TEST 10: The ALIANT prototype was executed manually with a gen-out file that
contained an error. The invalid gen-out file contained a valid feature but was missing
the "STARTCOMPILATION:" string.
RESULT: The following error messages were displayed before the prototype was
terminated:

<MatrixPkg. Count _Feature>
*** INCORRE ,' FORMAT IN GEN INPUT ***

*** FILE. CHECK THE GEN GRAMMAR. ***

****** ******** ***** *** ** *** *** ************* ***

** Exiting ALIANT driver due to fatal exception **

e User input errors.
TEST 11: During an interactive ALIANT execution, an invalid threshold value was
entered (non-natural number).
RESULT: The following error message was temporarily displayed on the screen before
the user input prompt was redisplayed:

** INVALID THRESHOLD VALUE -- MUST BE A NATURAL NUMBER **

TEST 12: The ALIANT prototype is executed with a batch input file that does not
contain enough entries for the input prompts that will be produced.
RESULT: The end of the alnt-out file contained the following error messages:

<MatrixPkg Display_Matrix. 1>
*** END-OF-FILE REACHED ON STD INPUT. ***

*** PROBABLY INVALID ENTRIES IN THE ***

*** ALIANT BATCH INPUT FILE (IF USED).***

** Exiting ALIANT driver due to fatal exception **

a Undefined feature token.
TEST 13: The ALIANT prototype is executed with a lex-spec file that does not
match the input grammar.
RESULT: The following error message was displayed each time an unknown character
string was identified.

** Undefined Token # 997, regenerate lex-spec file from input grammar. **

5-21

The results for all the error-checking tests are correct. In most czses, an error message

gives the user a suggestion how the error might be corrected. When such diagnosis is not

possible, the response is designed to prevent a user from receiving corrupted data. While

all possible errors cannot be detected, the most likely errors are detected and the user

notified.

The test results presented in this chapter have demonstrated the ALIANT prototype

is operating as designed. The next chapter will dhu rUss how well the ALIANT prototype

satisfies the original requirements and offer recommendations for further research.

5-22

VI. Conclusions and Recommendations

The original requirement for the ALIANT prototype was to develop a system that

would automatically identify recomni,.nded Ada compiler test combinations. The scope was

limited to the identification of the recommended combinations of Ada features. There was

no attempt to generate compilable test cases containing the recommended combinations.

This chapter will discuss how well the ALIANT prototype meets the original requirement

and will make recommendations for further research in this area.

6.1 Research Conclusions

The ALIANT prototype can provide a valuable service to ACVC support personnel.

Using the Adagen2 grammar (Appendix E.2) as is, or with minor modifications, AMO

personnel can use the prototype to identify potential feature combinations to be tested.

Since the Adagen2 grammar is already annotated with virtually all of the 297 primary

features, the ALIANT prototype output can be interfaced with the existing Program Ana-

lyzer Tool (PAT). Since the duplication and feature threshold values are input at execution

time, the prototype gives the user the flexibility to try various selection criteria to obtain

a reasonable subset of all generated combinations.

With nearly 300 primary features identified in the Ada grammar, it is a very difficult

task to identify which of these features are dependent on each other. The approach taken

in the ALIANT prototype is to generate hundreds, even thousands, of valid colbinations

and selectively choose the combinations of interest. The basis for this selection still requires

the intuition of the compiler tester since he/she must determine how much duplicatiort is

6-1

______________________________ ___________________

desired, and how many features are "enough". Since it is not practical to test all possible

combinations of the language features, the ALIANT selection techniques are based on the

premise that combinations being generated repeatedly are more likely to occur in actual

use. This premise assumes a "realistically" annotated grammar is used to generate the

test combinations. Based on independent tests with the Gen software, it does appear that

combinations are being generated according the annotated probabilities. Only by replacing

the Gen software with a test case generator customized for ALIANT purposes could total

control of the generation process be achieved. Such a "production" version of ALIANT is

included as a recommendation for further research.

The testing and analysis presented in the previous chapter showed how various num-

bers of combinations were tested to illustrate the growth of prototype output. Due to the

way the Gen test case generator works, the resulting output is always repeatable. In othei

words, running 1000 combinations noN, and 1000 combinations an hour later, will rebult in

the same set of combinations being generated. Also, if the output from a 1000 combination

test run is compared with a 2000 combination test run, the first 1000 combinations of the

latter test will match the combinations produced by the former test. Therefore, the only

way to get more variety in feature combinations is to run larger and larger test runs.

The development of the ALIANT prototype was made simpler due to several UNIX
S

operating system features. As described in Chapter IV, the use of a UNIX shell script and

redirection and piping features are essential to the operation of the ALIANT prototype.

These fcatur s rcduccd tIhc amount of effort required to ihlterfuc tht "uff-tie-shelr' Gen

software, "custom-built" Ada analysis programs, and the Lox support routines. The UNIX

environment proved to be ideal for this prototyping effort.

6-2

The ALIANT prototype has demonstrated that automated support tools can be

used to generate recommended combinations for Ada compiler testing. The utility of the

geneated combinations still depends on the skill and intuition of the compiler tester, but

the prototype makes it possible to analyze large amounts of data in a relatively short

time. Once the desired combinations are selected, the database output option allows the

information to be used directly by the remaining parts of Ada Features Identification

System (AFIS). The ALIANT prototype is usable in its present form, although further

improvements may be possible by considering the recommendations that follow.

6.2 Recommendations for Further Research

The completion of the ALIANT prototype confirms the feasibility of automated sup-

port tools for generating recommended feature combinations. The optimal implementation

of a "production" version of ALIANT would require the entire prototype be developed in

a single language, such as Ada. Certain benefits in performance could be realized by elim-

inating the interfaces between the existing C code (Gen and Lex routines) and the Ada

code. Rather than generate thousands of combinations to select from, a production version

could be developed to only generate combinations that meet the desired selection criteria.

This method should reduce runtime and reduce memory requirements for the intermediate

Gen output file. By enhancing the functionality of the Gen portion of the prototype, it

may be possible to incorporz te additional selection parameters that consider the nesting

levels and scope of various feature combinations. Such an implementation would also elimi-

nate the requirement for a UNIX shell script as a user interface. Before a production version

6-3

is attempted, there are several areas that could benefit from additional prototype enhance-

ment and research.

The first area concerns the operation of the existing ALIANT prototype. During

the testing and analysis of the prototype, two potential capabilities were identified. The

first would allow the specification of a starting .feature. Currently, the ALIANT prototype

generates a specified number of the compilation feature. Since the compilation is the

highest level feature in the Ada grammar, this produces combinations of some or all of

the lower level features. In certain cases, a, compiler tester may want to focus on the

possible combinations of a lower level feature and generate, -,y, 1000 combinations of

packagcspecification. An enhancement to the ALIANT prototype would allow a user

specified "starting point" as another parameter. A default for this parameter could be the

compilation feature.

The second potential capability concerns the combination matrix. The execution time

for generating and tabulating extremely large-numbers of combinations can be measured

in hours. Depending on the computer loading factor, a test run of 10000 combinations

usually takes over an hour. If the user knows ahead of time what threshold values are

desired, the ALIANT batch input works very well. On the other hand, if interactive "trial

and error" of various threshold options is desired, the prototype cannot be executed in

the background with a batch input file. Another enhancement to the existing prototype

would be additional options to save/load the combinations matrix to/from memory. This

would allow the prototype to generate the combinations matrix as a batch job for later

interactive analysis by the user.

6-4

The next recommended area for further research is grammar annotation. The gram-

mar annotation is a key step in the ALIANT prototype. Further research into other

annotation techniques may yield improvements in the selection/recommendation process.

The existing prototype uses duplication and feature counts as selectors. By adding addi-

tional embedded indicators in the annotated grammar, it may be possible to allow more

complex selection factors to be used. In addition to improvements in the grammar annota-

tion, research in this area may require modification of the Gen software to allow additional

annotations to direct the generation process. For example, it may be desirable to have

runtime counters to indicate the levels of the feature combinations being generated. This

would make it possible to specify a limit on the level, and thereby complexity, of the

generated test combinations.

A final recommendation for further research is to investigate the generation of corn-

pilable test cases based on the recommended combinations. As it stands right now, the

ALIANT prototype identifies combinations of Ada features to be tested. A user must then

manually create test cazes containing the specified Ada features. Each recommended com-

bination of Ada features can be used to generate many different tect cases based on the

valid permutations of the Ada features. In other words, the recommended combinations

do not specify the context in which the features are used. Further research is needed to

develop an automatic technique to generate compilable test cases from the recommended

combinations.

6-5

6.3 A Final Word

This ALIANT prototype was developed independent of the on-going work on the

remaining components of AFIS. Now that the initial feasibility has been demonstrated, the

next logical step is to implement the interfaces between ALIANT and the other support

tools. The current database output option in ALIANT would have to be adjusted, as

necessary, to match the format required for the PAT. Once these minor adjustments have

been made, the AMO can begin using the prototype for improving the ACVC test suite. As

new grammar specifications are created for the next Ada standard, Ada 9X, the ALIANT

prototype will provide the means to identify new feature dependencies and recommend

new combinations for testing Ada compilers.

6-6

Appendix A. Gen - A Test Case Generation Program

This appendix describes the Gen test case generation program which was developed

by Glenn Kasten, of Ready Systems, California (28). Althcugh it was creatcd to test

assembler language progrdms, it can also be used for other language applications. Examples

in thls appendix will demonstrate how Gen can be used to produce test cases for Ada

compilers.

A.1 Grammars

The input to Gen is a grammar which describes the possible sentences of a language.

The formal grammar for the Ada programming language is described in Appendix E of

the Ada Language Reference Manual (LRM) (16). This grammar provides the syntax of

Ada using a Backus-Naur Form (BNF) format. The Ada grammar uses several special

characters (i.e., "::=", "i", "{ 1", "[]") and typefaces (i.e., boldface and normal) to define

valid language constructs. For example, the following Ada production defines the proper

syntax for an Ada case-statement:

case-statement
case expression is

case-statement-alternative
{case-statemen Lalternative)

end case;

In the example above, the boldface words and the semicolon are termivals or ter-

minal symbols. A terminal symbol will appear in a case statement exactly as shown in the

grammar production. The nonterminals or nonterminal symbols, such as "expression" and

A-1

"case.statement-alternative", require further expansion by other productions in the Ada

grammar. In a context-free grammar such as Ada, each production has a single nontermi-

nal on the left-hand side of the symbol "::=". This symbol is equivalent to the phrases:

"is defined as", "may be rewritten as", or simply "equals". Wherever the nonterminal

on the left-hand side of the equals symbol appears in a gramrnar production, it can be

replaced by the terminals and nonterminals on the right-hand side of th, equals symbol.

Additional special purpose characters are used to describe the grammar options. These

symbols include the vertical bar "I" for alternatives, braces "{ }" to indicate zero or more

of the enclosed terminals/nonterminals, and brackets '41" to indicate an optional part of

the grammar production.

A.2 Ada Grammar to Gen Grammar

The Gen grammar description constructs are slightly different than the BNF format

used in the Ada LRM. For example, the earlier case statement production appears as

follows when translated into the Gen input format:

case.statement = (
case" expression "is"

case.statement-al ternative
more-alternatives

end case;"
)
more-alternatives = (

case.statementalternative more-alternatives)

Note that the terminals are enclosed in quotes and the regular equals sign is used instead of

the "::=" symbol for each production. In addition to the implied productions that are not

A-2

shown for "expression" and "case.statement.alternative", a production is required to model

the zero or more notation from the Ada BNF grammar. The production, more-alternatives,

allows either the null string or a case-statement-alternative followed by more-alternatives.

In other words, the production more-alternatives will generate zero or more occurrences of

case-statement-alternative.

This simple case-statement example shows how the Gen grammar productions are

formed. The following two sections provide the detailed rules for building Gen grammar

productions and adding randomness to production alternatives.

A.3 Building Rules

Each Gen grammar production must begin with a nonterminal symbol on the left

side of the equals sign. The right side of the equals sign is the rule that describes one

or more sentences in the language. The rules can be formed in any combination of the

following ways:

* A rule is a nonterminal symbol.

* A rule is a terminal enclosed in double quote marks.

* A rule is two rules separated by a space (concatenation).

* A rule is two rules separated by a vertical bar (alternation).

* A rule is a rule enclosed in parenthesis (grouping). (28:5)

To simplify the structure of rules, Gen provides several short hand notations:

* Alternation of Sets: The rule vowel - [aeiou] is equivalent to

vowel = "a" I "e" "i" j "o" "u" and letter - f a-zA-Z] is equivalent to
listing all the letters individually within brackets.

A-3

* Optional Rule: The rule plural - ? "s" is the same as plural - " " s

* Integer Range: The rule octal-byte # # 0 255 "% 03o" describes all the octal
numbers between 0 and 255, printed with up to two leading zeros. The C language
printf string in quotes determines the output format of the generated integers. This
integer range example is equivalent to the following set notation method:

octal-byte -- [0-3][0-7][0-7] (28:6)

In addition to the productions, an executable Gen grammar requires at least one

generation statement. A generation statement is simply a rule (the right hand side of a

production) on a line by itself. If the generation statement is omitted, Gen will not produce

any output.

A.4 Randomness Constructs

The percent-sign is used to add randomness to alternation rules. Consider the fol-

lowing production that will generate both A and B:

both = "A" I "B"

By adding the percent-sign after the alternation symbol, a new production is created

that will generate either A or B but never both:

either = "A" % "B"

For alternation sets, the percent-sign is used to randomly select one character or integer

from the set. When used with the question-mark operator, the percent-sign causes a

random selection of the nul string or the given rule. The following grammar would gencrate

a single random 4-letter or 6-letter word:

A-4

letter = [a-z]
word - letter letter letter letter ? (letter letter) %

When the percent-sign is used after the alternate or question-mark operator it may

be weighted by an integer constant between 0 and 100. This constant determines the

percentage probability that the left side of the alternate operator or the given question-

mark rule will be chosen. For example, this version of the either production will generate

an A, 70 percent of the time and a B, 30 percent of the time:

either "A" I% 70 "B"

And this version of the word production will generate 6-letter words 20 percent of the time

and 4-letter words 80 percent of the time:

letter = [a-z %
word = letter letter letter letter ? (letter letter) % 20

A.5 Using the Test Case Generator

To demonstrate how Gen produces test cases from an input grammar, the previ-

ously described case-statement grammar productions are used. The following listing is an

executable Gen input grammar for the case-statement example.

case-statement = (
" case" expression is"

case_statementalternative
more-alternatives

end case;"

A-5

expression = Exp"

case-.statement-.alternatjve "Case-Alter"

more-alternatives C
lilt

case-statement-alternative more-alternatives

case-statement]

The only differences betwveen this grammar and the previous Gen case-statement

grammar are the addition of the simplified p~roductions for "expression" and

"case-statement.alternative" and the occurrence of the "case-stateinent" generation state-

ment. The generation statement tells Gen to generate all the sentences described by the

case-.statement p~roduction. The first fewv lines of the resulting output from Gen are pro-

vided below:

case Exp is Case-Alter end case;
case Exp is Case-Alter Case-Alter end case;
case Exp is Case-Alter Case-.Alter Case-Alter end case;
case Exp is Case-.Alter Case-Alter Case-Alter Case-Alter end case;
case Exp is Case-Alter Case-Alter Case-.Alter Case-.Alter Case-Alter end case;

Since the Gen grammar description for the case-.statement can generate an infinite

number of sentences, Gen will produce test cases indefinitely. The abbreviated example

output above shows that Gen is adding a case..statement-alternative to each sentence to

grenerate the next sentence. To limit the (venerated sentences to ausable number, Gen

has randomness constructs. In cases where one or more alternatives are offered, the Tall-

domness constructs cause the test case generator to randomly choose between the alterna-

A-6

tives rather than exploring all possible alternative combinations. For example, using the

case-statement grammar, randomness can be added to the more-alternatives production

to limit the number of combinations generated. The modified grammar below includes the

"% 60" randomness construct that tells the test case generator to select the null string 60

percent of the time.

case-statement =
" case" expression " is"

case-statement-alternative
more-alternatives

end case;"
)

expression " Exp"

case-statement-alternative " Case-Alter"

more-alternatives = C
"" I% 60
case-statement-alternative more-alternatives

)

* 15 case-statement

The percent-sign operator can drastically reduce the number of alternatives that are chosen.

In order to generate enough test cases, the asterisk operator may be used as shown above

to repeat the same rule. In this example, 15 case-statement sentences will be generate.

Without the asterisk opertor, Gen would stop generating test cases as soon as the null

string alternative is chosen, resulting in a single test case being generated. The output

below shows how the randomness construct changes the types and number of sentences

produced:

A-7

case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter end case;
case Exp is Case-Alter Case-Alter end case;
case Exp is Case-Alter Case-Alter Case-Alter end case;
case Exp is Case-Alter end case;

Since the internal random generation function within Gen always begins from a fixed

"seed" or starting point, the 15 test cases above could not be obtained by 15 independent

executions of the given grammar. If this method were used, the output would be 15 copies

of the first test case in the listing above. Only by using the asterisk rule can the full benefit

of randomness constructs be obtained.

A-8

.

Appendix B. ACVC Test Glass Examples

The ACVC test suite contains over 4000 legal and illegal Ada test programs divided

into six test classes: A, B, C, D, E, and L. Classes A, C, D, and E are executable and use

additional utility programs to report test results during execution. The Class B tests are

illegal Ada programs that should generate compilation errors. Class L tests should produce

compilation or link time eirors due to the way the Ada program libraries are used at link

time. This appendix provides an example of each test class and a corresponding sample

test result from the Verdix Ada compiler. Examples of the utility support programs for

reporting executable test results are also provided.

B.1 Report Utility Package

The following package specification shows some of the utility programs used within

executable test cases to report test results. Procedure calls are made to these routines to

print out the test case being executed and its corresponding pass/fail status.

-- REPSPEC.ADA

-- PURPOSE:

-- THIS REPORT PACKAGE PROVIDES THE MECHANISM FOR REPORTING THE

-- PASS/FAIL/NOT-APPLICABLE RESULTS OF EXECUTABLE (CLASSES A, C,
-- D, E, AND L) TESTS.

-- IT ALSO PROVIDES THE MECHANISM FOR GUARANTEEING THAT CERTAIN
-- VALUES BECOME DYNAMIC (NOT KNOWN AT COMPILE-TIME).

-- HISTORY:
-- JRK 12/13/79

-- JRK 06/10/80

-- JRK 08/06/81
-- JRK 10/27/82

-- JRK 06/01/84

B-1

-- PWB 07/30/87 ADDED PROCEDURE SPECIAL-ACTION.

-- TBN 08/20/87 ADDED FUNCTION LEGALFILENAME.

PACKAGE REPORT IS

SUBTYPE FILEJNUM IS INTEGER RANGE 1..3;

-- THE REPORT ROUTINES.

PROCEDURE TEST -- TIIS ROUTINE MUST BE INVOKED AT THE
-- START OF A TEST, BEFORE ANY OF THE
-- OTHER REPORT ROUTINES ARE INVOKED.
-- IT SAVES THE TEST NAME AND OUTPUTS THE
-- NAME AND DESCRIPTION.

(NAME STRING; -- TEST NAME, E.G., "C23001A-AB".
DESCR STRING -- BRIEF DESCRIPTION OF TEST, E.G.,

-- "UPPER/LOWER CASE EQUIVALENCE IN " &
-- "IDENTIFIERS".

PROCEDURE FAILED -- OUTPUT A FAILURE MESSAGE. SHOULD BE
-- INVOKED SEPARATELY TO REPORT THE
-- FAILURE OF EACH SUBTEST WITHIN A TEST.

(DESCR : STRING -- BRIEF DESCRIPTION OF WHAT FAILED.
-- SHOULD BE PHRASED AS:
-- "(FAILED BECAUSE) ...REASON...".

PROCEDURE NOT-APPLICABLE -- OUTPUT A NOT-APPLICABLE MESSAGE.
-- SHOULD BE INVOKED SEPARATELY TO REPORT
-- THE NON-APPLICABILITY OF EACH SUBTEST
-- WITHIN A TEST.

(DESCR : STRING -- BRIEF DESCRIPTION OF WHAT IS
-- NOT-APPLICABLE. SHOULD BE PHRASED AS:
-- "(NOT-APPLICABLE BECAUSE)... REASON...".

PROCEDURE SPECIAL-ACTION -- OUTPUT A MESSAGE DESCRIBING SPECIAL
-- ACTIONS TO BE TAKEN.

-- SHOULD BE INVOKED SEPARATELY TO GIVE
-- EACH SPECIAL ACTION.

(DESCR : STRING -- BRIEF DESCRIPTION OF ACTION TO BE
-- TAKEN.

PROCEDURE COMMENT -- OUTPUT A COMMENT MESSAGE.
(DESCR : STRING -- THE MESSAGE.

PROCEDURE RESULT; -- THIS ROUTINE MUST BE INVOKED AT THE
-- END OF A TEST. IT OUTPUTS A MESSAGE
-- INDICATING WHETHER THE TEST AS A
-- WHOLE HAS PASSED, FAILED, IS
-- NOT-APPLICABLE, OR HAS TENTATIVELY

-- PASSED PENDING SPECIAL ACTIONS.

B-2

-- THE DYNAMIC VALUE ROUTINES.

-- EVEN WITH! STATIC ARGUMENTS, THESE FUNCTIONS WILL HAVE DYNAMIC
-- RESULTS.

FUNCTION IDENTINT -- AN IDENTITY FUNCTION FOR TYPE INTEGER.
(X : INTEGER -- THE ARGUMENT.
) RETURN INTEGER; -- X.

FUNCTION IDENTCHAR -- AN IDENTITY FUNCTION FOR TYPE

-- CHARACTER.
X : CHARACTER -- THE ARGUMENT.

) RETURN CHARACTER; -- X.

FUNCTION IDENT.BOOL -- AN IDENTITY FUNCTION FOR TYPE BOOLEAN.
(X : BOOLEAN -- THE ARGUMENT.

) RETURN BOOLEAN; -- X.

FUNCTION IDENTSTR -- AN IDENTITY FUNCTION FOR TYPE STRING.

(X : STRING -- THE ARGUMENT.
) RETURN STRING; -- X.

FUNCTION EQUAL -- A RECURSIVE EQUALITY FUNCTION FOR TYPE

-- INTEGER.

(X, Y : INTEGER -- TUE ARGUMENTS.

) RETURN BOOLEAN; -- X = Y.

-- OTHER UTILITY ROUTINES.

FUNCTION LEGALFILENAME -- A FUNCTION TO GENERATE LEGAL EXTERNAL

-- FILE N'"ES.
C X : FILENUM 1; -- DETERMiNES FIRST CHARACTER OF NAME.
NAM : STRING -- DETERINES REST OF NAME.

) RETURN STRING; -- THE GENERATED NAME.

END REPORT;

B.2 Class A Test Example

A Class A test is designed to compile successfully. As the following example shows,

the execution of the test code will not do anything significant other than call the RESULT

report procedure to indicate a successful test.

-- A21001A.ADA

-- CHECK THAT THE BASIC CHARACTER SET IS ACCEPTED
-- OUTSIDE OF STRING LITERALS AND COMMENTS.

B-3

--DCD 1/22/80

WITH REPORT;
PROCEDURE A21001A IS

USE REPORT;

BEGIN
TEST ("A2100IA", "CHECK THAT BASIC CHARACTER SET IS ACCEPTED")

DECLARE

TYPE TABLE IS ARRAY (1.. 10) OF INTEGER;
A :TABLE :(2 1 4 1 10 => I 1 1 3 1 5..9 => 0)

--USE OF ()

TYPE BUFFER IS
RECORD

LENGTH :INTEGER;
P08 INTEGER;
IMAGE :INTEGER;

END RECORD; -- USED TO TEST .LATER

Ri BUFFER;

ABCDEFGIIJKLM: INTEGER; -USE OFAB C DE FGHIIJ K L M
NOPQRSTUVWXYZ: INTEGER; -- USE OF NOP QR STU VW XY Z
Z-1234567890 INTEGER; -USE OF -1 23 4 567 8 90

1i, 12, 13 :INTEGER;
Cl, C2 :STRING (1. .6);
C3 STRING (1. .12);

BEGIN

Ii 2* (3-1+2) /2; 12:=8; -USES() * -

Cl "ABCDEF" ; -USE OF"

C2 Cl;

Cl :="ABCDEF" ; -USE OF"
C2 Cl;
C3 :C1 &C2 ;-USEOF &

12 16#D#; -- USE OF #

13 A'LAST; -- USE OFI

R1.POS 3; 3; USE OF

IF 11 > 2 AND
Il = 4 AND

Il < 8THEN -USE OF >=<
NULL;

END IF;

B3-4

END;

RESULT;

END A21OOIA;

The following output shows that the test case compiles successfully:

Elx:.i Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /enO/gcs9Od/jmaTr/adadir/atest.a
compiled Mon Jun 18 11:18:59 1990
by user jmarr

unit: subprogram body a21OOla
NO Ada ERRORS UNIT ENTERED

31 statements 64 lines
optimization pass 1 a21OOla..NLSB

102 IL instructions in

71 IL instructions out

When the test case is executed, the following output is produced:

---- A21001A CHECK THAT BASIC CHARACTER SET IS ACCEPTED.
A21001A PASSED ===----....-- --

B.3 Class B Test Example

A Class B test case is designed to produce compilation errors. A Class B test case is

passed if every illegal construct is detected at compile time. Note that this test case includes

a parameter ($BT.ANKS) that is used to customize this test case to implementations using

fixed length input lines.

B-5

-- B22001A.TST

-- CHECK THAT AN IDENTIFIER, RESERVED WORD, COMPOUND SYMBOL,

-- INTEGER LITERAL, CHARACTER LITERAL, STRING LITERAL, OR COMMENT
-- CANNOT BE CONTINUED ACROSS A LINE BOUNDARY.

-- FOR IMPLEMENTATIONS THAT USE FIXED LENGTH INPUT LINES,

-- ADDITIONAL BLANKS MUST NOT BE ADDED TO THE END OF THOSE LINES

-- THAT TRY TO FORCE A LEXICAL 2OKEN ACROSS A LINE BOUNDARY.

-- THUS, SUFFICIENT (I.E., MAXINLEN - 20) BLANKS ARE MACRO EXPANDED

-- AT YHE START OF THOSE PARTICULAR LINES SO AS TO BRING THE
-- LINE LENGTH UP TO THE MAXIMUM ALLOWED INPUT LINE LENGTH.

-- IDENTIFIER CROSSES LINE BOUNDARY.

-- DCB 12/18/79
-- JRK 4/21/80

-- JRK 12/16/80

PROCEDURE B22001A IS

TYPE INTE IS NEW INTEGER;

I INTEGER;

EX INTEGER;
II INTEGER;

BI : BOOLEAN;

C1 CHARACTER;

S1 STRING (1..6);

$BLANKS INT1 INTE
GER; -- ERROR: IDENTIFIER CROSSES LINE BOUNDARY.

12 : INTEGER;

13 : INTEGER;

BEGIN

NULL;

WHILE FALSE LOOP

NULL;

END LOOP;

END B22001A;

The following output shows that the compiler does detect the intended error:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987

Version 5.5 - ELXSI UNIX VADS

File: /enO/gcs9Od/jmarr/adadir/btest.a
compiled Mon Jun 18 11:20:00 1990

B-6

by user jmarr

unit: subprogram subunit b22001a
I SYNTAX ERROR UNIT UNCHANGED

14 statements 43 lines

***********'***************btest a *****************

30:GER; -- ERROR: IDENTIFIER CROSSES LINE BOUNDARY.

A:syntax error: "ger" deleted

B.4 Class C Test Example

A Class C test case is designed to check the run time system. These test cases include

code that must compile and execute successfully. If the code does not execute as expected,

a procedure call is made to the utility program FAILED to print out an error message.

-- C23001A.ADA

-CHECK THAT UPPER AND LOWER CASE LETTERS ARE EQUIVALENT IN IDENTIFIERS
-- (INCLUDING RESERVED WORDS).

-- JRK 12/12/79
-JWC 6/28/85 RENAMED TO -AB

WITH REPORT;
PROCEDURE C23001A IS

USE REPORT;

AN-.IDENTIFIER : INTEGER := 1;

BGNTEST ("IC23001A"I, "UPPER/LOWER CASE EQUIVALENCE IN IDENTIFIERS");

DECLARE
an-.identifier : INTEGER := 3;

BEC IN
IF an-.identifier /= AN-.IDENTIFIER THEN

FIALLD ("LOWER CASE NOT EQUIVALENT TO UPPER "&
"IN DECLARABLE IDENTIFIERS");

END IF;
END;

13-7

IF An-IdEnTIfieR / AN-.IDENTIFIER THEN
FAILED ("MIXED CASE NOT EQUIVALENT TO UPPER IN &

"DECLARABLE IDENTIFIERS");
END IF;

if AN-IDENTIFIER = 1 ThEn
AN-IDENTIFIER :=2;

END IF;
IF AN-IDENTIFIER /= 2 THEN

FAILED ("LOWER AND/OR MIXED CASE NOT EQUIVALENT TO "&

"UPPER IN RESERVED WORDS");
END IF;

RESULT;
END C23001A;

The following output shows that the Class C test compiles successfully:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

Filc: /enO/gcs9Od/jmarr/adadir/ctest .a
compiled Mon Jun 18 11:20:12 1990
by user jmarr

unit: subprogram body c23001a
NO Ada ERRORS UNIT ENTERED

16 statements 43 lines

***************************ctest .a *******~********'*

20: an-identifier :INTEGER := 3;
A ----------------
A:warning: id hides outer definition
optimization pass 1 c23001a. .NLSB

78 IL instructions in
62 IL instructions out

When the test ca&s, is executed, the following output is produced:

--- C23001A UPPER/LOWER- CtSE EQUIVALENCE IN IDENTIFIERS.
C23001A I -. SED- - - - - -

B-8

B. 5 Class D Test Example

A Class D test case checks the compilation and execution capacities of a compiler.

Since most capacity limits are not specified by the Ada language standard, a valid compiler

may be classified as inapplicable if a Class D test fails to compile because the capacity of

the compiler is exceeded.

-- D55A03A.ADA

-- CHECK THAT AN ARBITRARY LEVEL OF LOOP NESTING IS PERMITTED.

-- CHECK 7 LEVELS OF LOOP NESTING.

-- ASL 8/06/81

-- RM 6/28/82
-- R" 7/06/82
-- SPS 3/1/83

WITH REPORT;

PROCEDURE D55AO3A IS

USE REPORT;

X : INTEGER 1;

COUNT : INTEGER := 0;

DESCENDING BOOLEAN IDENT.BOOL(TRUE);

BEGIN

TEST ("D55A03A","7 LEVELS OF LOOP NESTING");

FOR I IN X..IDENTINT(1) LOOP
WHILE DESCENDING LOOP

LOOP
EXIT WHEN NOT DESCENDING

FOR I IN X..IDENTINT(1) LOOP
WHILE DESCENDING LOOP
LOOP
EXIT WHEN NOT DESCENDING

FOR I IN X..IDENTINT(1) LOOP

COUNT COUNT + 1;

B-9

DESCENDING IDENT.BOOL(FALSE)
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;
END LOOP;

IF COUNT /= 1 THEN
FAILED ("LOOPS NOT EXECTITED PROPER NUMBER OF TIMES");

END IF;

RESULT;

END DSSAO3A;

The following output shows the results of a successful Compilation of this Glass D

test:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 6.5 - ELXSI UNIX VADS

File: /enO/gcs9Od/jmarr/adadir/dtest a
compiled Mon Jun 18 11:25:03 1990
by user jmar

unit: subprogram body dS~aO3a
NO Ada ERRORS UNIT ENTERED

21 statements 56 lines

**************************dtest a ************A****

33: FOR I IN X. .IDENT-INT(l) LOOP
A ------------
A:warning: id hides outer definition

38: FOR I IN X. .IDENT-INT(1) LOOP
A ------------
A:warning: id hides outer definition
optimization pass 1 d65a03a..NLSB

176 IL instructions in
132 IL instructions out

B3-10

When the test is executed, the following output is produced:

---- D55A03A 7 LEVELS OF LOOP NESTING.

=.== D55A03A PASSED

B.6 Class E Test Example

A Class E test is designed to check implementation-dependent options. Like a Class

D test, a Class E test may be inapplicable to a certain compiler implementation.

PRAGMA SYSTEM-NAME (NOBODY);

PRAGMA MEMORY-SIZE (ONE);

PRAGMA STORAGE-UNIT (TWO);

-- E28002A.ADA

-- OBJECTIVE:

-- CHECK THAT A PREDEFINED OR AN UNRECOGNIZED PRAGMA MAY HAVE
-- ARGUMENTS INVOLVING IDENTIFIERS THAT ARE NOT VISIBLE.

-- THESE PRAGMAS ARE IMPROPER, BUT THEY ARE LEGAL STATEMENTS
-- THAT MUST BE IGNORED BY THE COMPILER.

-- PASS/FAIL CRITERIA:

-- 1) THE TEST MUST EXECUTE AND REPORT "TENTATIVELY PASSED";
-- 2) THE COMMENT CONTAINING "*** MUST APPEAR ***" MUST APPEAR IN

-- THE COMPILATION LISTING;

-- 3) THE TWO COMMENTS CONTAINING "*** SAME PAGE ***" MUST APPEAR ON

-- THE SAME PAGE.

-- HISTORY:

-- TBN 02/21/86 CREATED ORIGINAL TEST.

-- JET 01/13/88 ADDED CALLS TO SPEC-ACT AND UPDATED HEADER FORMAT.

-- DII1 03/02/89 ADDED PRAGMA PAGE BEFORE PRAGMA PAGE(ONE).

WITH REPORT; USE REPORT;

PRAGMA ELABORATE (ZZZZZZZZZZ);

PROCEDURE E28002A IS

PRAGMA OPTIMIZE (WHAT);

PRAGMA PRIORITY (ONE);

PRAGMA CONTROLLED (OPTIMIZE);

PRAGMA SHARED (GLOBALMONEY);

PRAGMA INTERFACE (FORTRAN, FUN);

B-11

PRAGMA INLINE (XYZ);

PRAGMA PACK (CHARTYPE);

PRAGMA SUPPRESS (MONEY, INTEGER);

PRAGMA PHILBRASHEAR (ONE);
MYINT : INTEGER;

BEGIN
TEST ("E28002A", "CHECK THAT A PREDEFINED OR AN UNRECOGNIZED "

"PRAGMA MAY HAVE ARGUMENTS INVOLVING " &
"IDENTIFIERS THAT ARE NOT VISIBLE");

PRAGHA LIST (NEXT);
-- THIS COMMENT *** MUST APPEAR ***.

SPECIAL-ACTION ("CHECK LISTING FOR COMMENT ""*** MUST APPEAR "
"1***""") 9;

PRAGMA ROSA-WILLIAMS (TWO);

PRAGMA THOMASNORRIS (THREE);
PRAGMA PAGE;

PRAGMA PAGE (ONE);

-- THIS COMMENT MUST BE ON THE *** SAME PAGE *** AS THE NEXT COMMENT.
PRAGMA PAGE (FOUR);

-- THIS COMMENT MUST BE ON THE *** SAME PAGE *** AS THE PRECEDING

-- COMMENT.
SPECIAL-ACTION ("CHECK THAT COMMENTS 1""*** SAME PAGE ***"" " &

"ARE ON THE SAME PAGE OF THE LISTING");
RESULT;

END E28002A;

'he following output shows that the Class E test does compile successfully:

(Although several warnings are generated)

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /enO/gcs9Od/jmarr/adadir/etest.a
compiled Mon Jun 18 11:29:10 1990

by user jmarr

unit: subprogram body e28002a

NO Ada ERRORS UNIT ENTERED

27 statements 62 lines

********************************** etest.a ********************************

1:PRAGMA SYSTEM-NAME (NOBODY);

A ---"
A:warning: RM 13.7(11) System can be altered only by direct recompilation

2:PRAGMA MEMORY-SIZE (ONE);

A---

B-12

B --- - - - -- - - - - -

A:waxning: 111 13.7(11) System can be altered only by direct recompilation
B:wtxning: RH Appendix B: pragma argument must be a numeric literal

3.PRAGMA STORAGE-.UNIT (TWO);

C.---------------------------

,4,rning: RM 13.7(11) System can be al.tered only by direct recompilation
u1.arning: RM1 Appendix B: pragma argument must be a numeric literal
27:PRAGHA ELABORATE (ZZZZZZZ..ZZZ);

A:varning: 111 BM3: doesn't name WITH'd unit.
3.1: PRAGMA OPTIMIZE (WHAT);

X:%warning: RM Appendix B: incorrect pragma argument identifier
32: PRAGMA PRIORITY (ONE);

A
A:irning: RH 13.7: SYSTEM is not available

33: PRAGMA CONTROLLED (OPTIMIZE);
A --------------------------
A:warning: RH 8.3: identifier undefined

34: PRAGMA SHARED (GLOBAL-MOHEY);
A ---------------------
A:warning: RH 8.3: identifier undefined
A:warrning: RM 9.11(10): argument must be a variable

35: PRAGMA INTERFACE (FORTRAN, FUN);
A---------------------------------
A:varning: RM 8.3: identifier undefined
A:warning: RH 13.9: not a subprogram name

36: PRAGMA INLINE (XYZ);
A ----------------------
A:iwarning: RH 6.3.2(3): must name a subprogram in the current declarative part

37: PRAGHA PACK (CHAR-.TYPE);
A --
A:warning: RH 8.3: identifier undefined

38: PRAGHA SUPPRESS (MONEY, INTEGER);
A -----------------------
A:warning: RH Appendix B: incorrect pragma argument identifier
39: PRAGHA PHIL-BRASHEAR (ONE);

A - - - -
A:warning: 111 Appendix B: undefined pragma

46: PRAGHA LIST (NEXT);
A --------------------
A:varning: RH Appendix B: incorrect pragma argument identifier

S0: PRAGHA ROSA-.WILLIAMS (TWO);
A - - - -
A:r~arning: RH Appendix B: undefined pragma

51: PRAGHA THOMAS-NORRIS (THREE);
AN

A:warning: RH Appendix B: undefined pragma
53: PRAGMA PAGE (ONE);

A --------------------
A:warning: RH Appendix B: too many pragma arguments

55: PRAGMA PAGE (FOUR);
A -------------------
A:warning: RH Appendix B: too many pragma arguments
optimization pass 1 e28002a. .NLSB

1B-13

47 IL instructioF in
32 IL instructions out

When the test is executed, the following output is produced. As indicated by the

output comments, the test is not completely passed until the source code listing is checked

for proper location of the test comments. Although not included here, the source listing

did, in fact, have the test comments on the proper pages.

---- E28002A CHECK THAT A PREDEFINED OR AN UNRECOGNIZED PRAGMA MAY HAVE
ARGUMENTS INVOLVING IDENTIFIERS THAT ARE NOT VISIBLE.

E28002A CHECK LISTING FOR COMMENT "*** MUST APPEAR ***".
E28002A CHECK THAT COMMENTS "*** SAME PAGE ***" ARE ON THE SAME

PAGE OF THE LISTING.
!HE28002A TENTATIVELY PASSED !!!!!!!!!!!!H!!.

SEE '!' COMMENTS FOR SPECIAL NOTES!!

B. 7 Class L Test Example

A Class L test case is designed to fail no later than link time (some implementations

may detect an error at compile time). In most cases, these tests check that "incomplete

or illegal Ada programs involving multiple, separately compiled units are detected and not

allowed to execute" (2:1.5).

-- LA1001F.ADA

-- OBJECTIVE:
-- CHECK THAT A PACKAGE CANNOT BE NAMED AS A MAIN PROGRAM.

-- HISTORY:

-- JET 08/12/88 CREATED ORIGINAL TEST.

PACKAGE LAIOOIF IS
END LA1001F;

WITH REPORT; USE REPORT;
PRAGMA ELABORATE(REPORT);

B-14

PACKAGE BODY LAI001F IS

BEGIN

TEST("LAI001F", "CHECK THAT A PACKAGE CANNOT BE NAMED AS A " &
"MAIN PROGRAM");

FAILED("PACKAGE WAS IMPROPERLY LINKED AND EXECUTED");

RESULT;

END LA10O1F;

The following output shows that the Class L test compiled successfully:

Elxsi Verdix Ada Compiler, Copyright 1984, 1985, 1986, 1987
Version 5.5 - ELXSI UNIX VADS

File: /enO/gcs9d/jmarr/adadir/ltest.a

compiled Mon jun 18 11:31:25 1990
by user jmarr

unit: package la1001f

NO Ada ERRORS UNIT ENTERED
unit: package body lalOOlf

NC Ada ERRORS UNIT ENTERED

8 statements 21 lines
optimization pass 1 laI0O1f..NLPS

9 IL instructions in

7 IL instructions out
optimization pass 1 lalOOlf..NLPB

36 IL instructions in

26 IL instructions out

When the test is linked, the following error message is produced, as desired:

RM 10.1(8): spec of lalOOlf (from /enO/gcs9Od/jmarr/adadir/itest.a)

can not be a main program
A parameterless integer function or procedure is required

B-15

Appendix C. Lex Description

The ALIANT prototype depends on a utility program called Lex. Lex is used to

create a C language subroutine which recognizes character strings produced by the Gen

software. This appendix describes the operation of Lex and some of the ways it can be

used to generate stand-alone programs or subroutines. Sample Lex specification files used

by the ALIANT prototype are also provided.

C.1 Lex Description

Lex is a generator of lexical analysis programs. A lexical analyzer is the first phase

of a compiler. "The function of the lexical analyzer is to read the source program, one

character at a time, and to translate it into a sequence of primitive units called tokens.

Keywords, identifiers, constants, and operators are examples of tokens" (4:73). These

tokens are then passed to the next phase, the syntax analyzer, or parser.

Lex simplifies the somewhat tedious task of creating a lexical analyzer. Given an

input file containing properly formatted regular expressions and associated actions, Lex

will automatically generate a C language program. When compiled and executed, this

program will search for the user specified regular expressions in an input text file. If one

of the regular expressions is found, the associated action is performed. Lex was developed

by M. E. Lesk and E. Schmidt at Bell Laboratories in 1975 (30).

Lex programs are usually created to provide input to a parser generated by YACC.

YACC is an automatic generator for the parser phase of a compiler. It was designed by

S. C. Johnson and presented is his paper, YACC - Yet Another Compiler Compiler (26).

C-1

YACC produces a parser which continually invokes a user defined lexical
analyzer to process streams of input. The specification of the grammar includes
a list of tokens for the grammar, the grammar rules and any actions to be taken
as the rules are invoked. The actions have the ability to return values and to
use the values returned by other actions. (43:23)

When used in this manner, the Lex program is "included" in the YACC specification file,

allowing YACC to make function calls to the Lex subroutine. The YACC specification

file, which will not be discussed in more detail, consists of three sections: the declaration

section, the grammar rules section and the program section. A thorough discussion of how

Lex and YACC work together can be found in a thesis by Rosa J. Williams, Automatic

Generation of Parsers Using YACC and Lex (43).

Lex programs can also be used independently from YACC as a "stand-alone" program

or as a sul)routine to other user defined programs. This allows the user to take full

advantage of the powerful recognition capability of regular expressions to search various

sorts of input text files.

A Lex program is defined by a specification file. The Lex specification file consists of

definitions, rules, and user subroutines. The format is as follows:

definitions
Hl,
rules

user subroutines

The definitions and user subroutines are optional and may be omitted. The smallest

Lex specification file is just "%W"; in which the implied rule is to copy the input file

to the output file unchanged. When rules are specified, they have the general form

C-2

"expression action". The expression is a regular expression that will be described in

the next paragraph. The actions are user defined C language statements. Whenever the

regular expression is recognized in the input text, the corresponding action, if any, is exe-

cuted. Any portion of the input file that does nlot match a regular expression is copied to

the output file. The Lex specification file can be created using any text editor and stored

in a user file for Lex processing. When Lex is invoked with the name of the specification

file, the generated C program will be stored in "lex.yy.c". Further details for processing

the specification file are provided in a later paragraph.

The regular expressions used by Lex are similar to those used by various UNIX

pattern recognition programs such as "awk" and "grep". Regular expressions may con-

tain letters, digits and operator symbols. The following special characters are considered

operator symbols by Lex:

"\ -? .*+ >

If any of these characters is to be used as a text character, it must be preceded by the

escape character, \ (backslash), or be included within quotation marks. For example, each

of the following regular expressions will recognize the string "count++":

"count++" count"++" count\+\+

TL . ad g1rit brackets, [and], are used tu denure cliaracte Classes. The character

class [aAbBcC] will match a single upper or lowercase A, B, or C. By using the brackets in

conjunction with the operator symbols \, ^, and -; a variety of recognition patterns can be

C-3

created. A comme. e.'ample is [a-zo-9], which will match a single lowercase letter or digit.

To match any character besides a-z or 0-9, the ^ operator symbol is included: [^a-z0-9].

But to match a-z, 0-9, and ^, the escape symbol is included: [\^a-zo-9]. The backslash

tells Lex to treat the caret symbol as a text character rather than a control symbol.

The ? is used to denote optional characters. The expression st?k will match sk or stk.

By add.ng the repetition operator symbols * and + , more complicated text strings can be

recognized. The * symbol indicates zer) or more occurrences of a text character or string,

and the + symbol indicates one or mc-e occurrence. For example, st+?k* would match

such strings as s, st, stk, sttkk, and sk; but not k. The expression [a-z]+ will recognize all

strings of one or more lowercase letters. The expression [A-Za-z][.A-Za-z0-9]* will match

all alphanumeric strings beginnIng with a letter (43:46).

The operator symbol I denotes alternatioi, while the parentheses are used to group

complex expressions. The expression (abcjxyz) will match either abc or xyz. The expres-

sion (abc+lxyz*) will match such strings as abc, abcc, xy, xyz, xyzz.

A more practical example is [a-zA-Z]([-]?[a-zA-Z0-9])*. This expression
matches any identifier for the Ada language. Note that the identifier must
begin with a letter and it may contain zero or more additional letters or num-
bers. The "-" character is optional, but should it occur, it must be followed by
at least one letter or number. Hence, consecutive underscores or terminating
underscores are not allowed. (43:47)

Some of the operator symbols can be used to indicate the context in which a regular

expression is to be recognized. For example, the string '[a,-z1 will match any lowercase

character if it is located at the beginning of a line, whereas [a-z]$ will match the same

character if it occurs at the end of a line.

C-4

The remaining operator symbols are used in conjunction with the definition section

of the specification file. A simple example of the definition section is provided below.

Further information can be found in (30) or (43). To simplify some regalar expressions, or

to make them more ieadable, the definition section can be used to give names to specific

expressions. For example, consider the following specification file:

e [eE] }
digit [0-9) }definition
digits {digit} ([] ?{digits}) * }section

{digits} ({e}[+]?{digits})? printf("integer"); }rules section

The braces, { and), denote repetition if they enclose numbers, or definition expansion if

they enclose a name. In the example above, the braces are used for definition expansion,

but in the string a{1,5} the braces mean one to five occurrences of the letter "a". The

regular expression in the rules section above will match an integer literal from the Ada

language and the action will cause "integer" to be printed (43). The next paragraph shows

how an actual Lex specification file is processed to create the Lex program.

To illustrate the steps in creating a Lex program, the following simple Lex specifica-

tion is borrowed from the UNIX User's Manual (38):

[A-Z] putchar(yytext[0] + 'a' - 'A');
[]+$
]]+ putchar (' ');

main 0
{ yylex(); }

First note that this specification file has no declaration section. The rules section has three

regular expressions. The first one will match any uppercase letter. The corresponding

action will output the letter in lowercase. The array "yytext" is a standard character

found in every Lex generated program. It contains the input string matched by a regular

expression. In this case, a single character will be located in yytext[0]. By subtracting

the ASCII difference between "a" and "A"', the resulting character will be the lowercase

equivalent of the letter in yytext[O]. The second regular expression/action will strip trailing

blanks from each input line, while the third regular expression/action will replace strings of

one or more non-trailing blanks with a single blank. The user subroutine section contains

a driver program for the Lex program which has the standard name "yylex". This driver

will allow the Lex program to execute without interfacing with any other programs. This

is a good way to test individual Lex programs before interfacing them to YACC or other

routines.

The first step to process the Lex specification file is to invoke Lex using the following

command:

lex filename

where "filename" is the filename of the lex specification file. The resulting output is

automatically stored in "lex.yy.c". The next step in creating an executable Lex program,

is to compile the lex.yy.c source code file:

cc lex.yy.c -11

C-6

The executable file will be stored in a file called "a.out". Figure C.1 shows in-

put/output examples for this program (with comments added). The way this sample

program was set up, the keyboard is the default input device and the terminal screen is

the default output device. Although this is a simple example, the sample input/output

demonstrates that the specified Lex program works properly.

%a.out <--- execute compiled lex.yy.c program

THIS LINE IS IN ALL CAPITAL LETTERS. <-- input
this line is in all capital letters. <-- output

this line is MIXED UPPER AND lower case. <-- input
this line is mixed upper and lower case. <-- output

THIS LINE HAS EXTRA SPACES IN THE MIDDLE. <-- input
this line has extra spaces in the middle. <-- output

Figure C.1. Sample Yylex Input/Output

As Lex processes a specification file, it will identify any errors found in rules syntax;

however, the C code in the action statements will not be checked for errors until the

lex.yy.c file is processed by the C compiler. Depending on the size of the specification file

and complexity of the regular expressions, the default sizes for the Lex generated tables

may be exceeded. If so, Lex will display an error message indicating the name of the table

that overflowed and the current size limit of the table. To increase the size of any of the

tables, a statement must be added in the declarations section of the specification file. The

format is "%x nnn" where nnn is a decimal integer representing the table size and x is one

of the parameters listed in Table C.1.

C-7

Table C.1. Lex Size Parameters

Letter Parameter

a transitions

e tree nodes

k packed character class

n states

o output array size

p positions

The C source code produced by Lex can be interfaced with other C programs by

simply including the lex.yy.c with the other routines before compilation. Interface with

Ada programs is also possible by using pragma inteface, as done in the ALIANT prototype

(Chapter IV). The brief Lex sample just presented did not return values to the calling

program when it matched a particular regular expression. The typical use of a Lex program

is to find a token and return a value for a parser to analyze syntax. That is the way Lex

is used in the ALIANT prototype.

C.2 Sample lex-spec Listing

The following listing is the lex.spec file generated from the Adagen2 grammar. For

each regular expression, a unique token number is returned. The ALIANTDriver uses this

token to determine what action to take.

%a 6000
%e 7000
%n 4000
%p 24000

C-8

7.0 5000

Urpicaatr eun)
bcgraphic.character{ return(2);}

basic-.character {return(3);}
identifier {return(4);}
letter-or-digit {return(5);}
letter {return(6);}
integer-literal {return(7);}
real-literal {return(8);}
integer {return(9);}
exponent {return(10);}
based-literal {return(11);}
base {return(12);}
based-.integer {return(13);}
extended-digit {return(14);}
character-literal {return(15);}
string-literal {return(16);}
pragma {return(17);}
pragma:arguinent-association {return(18);}
predef-pragma {return(19);
argument-association {return(20);}
obj ect-decl f return(21);}
object-init-val f return(22); 3
object-init-val-constrained-array f return(23); 3
constant-.decl f return(24); 3
nuinber-decl f return(25); 3
identifier-list f return(26);}
full-.type-decl {return(27); 3
subtype..decl f return(28); 3
subtype-.indic f return(29);}
type-.mark f return(30); 3
derived-type-.def f return(31); 3
range-attribute f return(32); 3
explicit-range f return(33); 3
enum-type-def f return(34); 3
enumeration-.literal..specification f return(3S);}
enumieration-.literal f return(36); 3
integer-type..def f return(37); 3
floating-.point-.type-def f return(38); 3
fixed.point-.type..Aef f return(39); 3
floating-point-constraint f return(40); 3
floating-accuracy..definition f return(41); 3
fixed-point-constraint f return(42); 3
fixed-accuracy..definition f return(43); 3

C-9

array-type-def {return(44);}
array-.of:access {return(45);}
array-of:boolean {return(46);}
erray-.of:integer {return(47);}
arra~r-of :rea. return(48);
array-.of:record {return(49);}
array.of :task {return(50);}
wiconstrained-array-.def {return(51);
constrained-array.def {return(52);}
index-subtype-definition {return(53);}
index-.constraint {return(54);}
discrete-range {return(55);}
record-type-def {return(56);}
record-.of:access {return(57);}
record-of:array {return(58);}
record-of:record {return(59);
record-of task {return(60);}
null-component-list {return(61);
component-decl:default {return(62);}
component-decl:no-default {return(63);}
component.subtype-definition {return(64);}
discriminant-spec:default {return(65);
discriminant-spec:no.Aefauit {return(66);
discriminant..constraint {return(67);}
discriminant-association {return(68);}
variant-part {return(69);}
variant-~choice f return(70);}
variant-choice-others f return(71);}
access-.type-.def f return(72);}
access-.to:6rray f return(73);}
access-.to:record f return(74);
access-.to task f return(75);}
incomplete-.type..decl f return(76);}
indexed-conponer', f return(77);}
slice f return(78);}
selected-component f return(79);}
selector-all return(80);}
attribute {return(81);}
predef-attr {return(82);}
attribute-.designator {return(83);}
aggregate {return(84);
named-component-association {return(85);
andthen {return(86);}
orelse {return(87);}
membership-test-in {return(88);}

0-10

membership-test-not-.in {return(89);}
simple-.expression {return(90);}
exponentiation {return(91);}
absolute-value {return(92);}
not-operator {return(93);}
null-access-value {return(94);}
parenthesized-expr {return(95);
and-.operator {return(96);}
or-.operator {return(97);}
xor-.operator {return(98);}
equality {return(99);}
inequality {return(100);}
less-.than {return(101);}
less..than-.or.equal-to {return(102);
greater-than {return(103);
greater-than-orequal-to {return(104); J
addition {return(105);}
subtract ion {return(106);}
catenation {return(107);}
unary-.addition {return(108);}
unary-minus {return(109);
multiplication {return(O10); I
division{ return(i11);}
mod-.operator {return(112);}
rem-operator {return(113);}
exponentiation {return(114);}
absolute-value {return(115);}
not-.operator {return(116);}
type-conversion f return(117);}
qualified-expr f return(118);}
alloc:qualified..expr f return(119);}
alloc:subtype-..ndicconstr f return(120);}
alloc:subtype-ndic-.no-constr f return(121);}
label f return(122);}
null-.statement f return(123);}
assignment-.statemnent f return(124);}
if-.statement {return(125);}
condition {return(126);}
case-.statement f return(127);}
case-statement-.alternative {return(128);}
loop-statement {return(129);
iteration-scheme:for {return(130);}
iteration-scheme:while {return(131);
loop-param-.spec:up {return(132);
loop-,paramspec:down {return(133);

C-11

block-statement {return(134);
exit-statement {return(135);
return-.statement {return(136);
goto-.statement {return(137);I
subprogram-decl:proceduie {return(138);
subprogram-decl:function {return(%139);
user-.defined-.operator {return(J40);I
subprog-param-.spec:default {return(141);
subprog-.param-spec:in {return(142);I
subprog-param-spec:in-default {return(143);
subprog-.param-.spec:in-.out {return(144);I
subprog-parai-spec:no-.default {return(145);I
subprog-parain-spec:out {return(146);I
mode-in {return(147);}
mode-.in-.default {return(148);I
mode-in-out {return(149);I
mode-out {return(iSO);I
procedure-body {return(151);
function-body {return(152);
procedure-call-statement {return(153);
function..call {return(154);
actual-paraxneter-part {return(155);I
parameter-.association {return(156);}
formal-paramneter {return(157);I
actual-parameter {return(158);I
package-.spec {return(159);I
package-body {return(160);I
private-type-.decl {return(161);
limited-private-type-.decl {return(162);I
deferred-constant-.declaration {return(163);I
use-.clause {return(164);
rename: entry {return(165);
rename:exception {return(166);}
rename: obj ect {return(167);
rename: package {return(168);
rename: subprog {return(169);
rename:subprog-or-.entry {return(170);I
task-spec {return(171);
task-.type-spec {return(172);I
task-.body {return(173);I
entry-decl {return(174);
entry-family-decl {return(175);I
entry-param-spec {return(176);
entry-param-spec:default {return(177);
entry-paranl-spec:in {return(178);I

C-i12

entry-.param-.spec:in-default {return(179);}
entry-paraxn-spec:in-out {return(180);}
entry-param-spec:no.Aefault {return(181);}
entry-.paraxn..spec:out {return(182);}
entry.,ca11..statement {return(183);}
accept-.statewent {return(184);}
delay-.statament {return(185);}
sel-wait:accept.alt f return(i86);}
sel-wait:accept-alt-guarded f return(187);}
sel-wait accept-.aJltunguarded f return(188);}
sel-wait:delay-alt f return(189);}
sel-wait :delay..alt-guarded f return(190);}
se1..yait:delay-alt-unguarded f return(191);}
sel-wait:else-part f return(192);}
sel-wait:ten-~alt f return(193);}
sel-.wait:term-.altguarded f return(194);}
sel-wait:term..alt-unguarded f return(195);}
select-alternative f return(196);
terminate-.alternative f return(197);}
conditional-ntry.call f return(198);}
timed-entry-call f return(199);}
abort-statenent f return(200);}
with-clause f return(201);}
procedure-body-stub f return(202);}
function-body-stub f return(203);}
package-body-stub f return(204);}
task-body-stub f return(205);}
procedure-subunit f return(206);}
function-subunit f return(207);}
package-.subunit f return(208);}
task-~suabunit f return(209);}
exception..decl f return(210);}
exception-.handler f return(211);}
exception-choice-othe-s (return(212);}
predef-.except f return(213);}
raise-statement f return(214);}
gen-package-spec f return(215);}
gen-subprog-spec f return(216);
gen..subprog-spec :function f return(217);}
gen..subprog.spec:procedure f return(218);}
gen-forma..obi:defaiit f return(219);}
gen-formal..obj:in f return(220);}
gen.formal-obj:in-default f return(221);}
gen..formal-.obj:in-out f return(222);}
gen-formal-obj:no.default f return(223);}

C-13

gen.formal-part {return(224);}
gen-formal-subprog {return(225);}
gen-formal-subprog:box-default { eturn(226);}
gen-formal-subprog :nz.efault {return(227);
gen-formal-type {return(228);}
gen-formal-type:access {return(229);
gen-.formal-type:array {return(230);
gen..formal-.type:discrete {return(231);}
gen-.formal-.type:fixed-.point {return(232);}
gen-formal-.type:floating-.point {return(233);}
gen-formal-type:integer {return(234);}
gen-formal-.type:lim..private {return(235);}
gen-formal-type:private {return(236);}
generic-type-definition f return(237);}
gen.function-instantiation f return(238);}
gen-package-instantiation f return(239);}
gen-procedure-instantiation f return(240);}
gen-.subproginstantiation f return(241);}
gen.actual-object f return(242);}
gen-.actual:subprog f return(243);}
gen-actual:type f return(244);}
gen-actual:type-access f return(245);}
gen..actual:type-.array f return(246);}
gen-.actual:type-discrete f raturn(247);}
gen-actual:type-fixed-point f return(248);}
gen-actual :type..floating-.point f return(249);}
gen-.actual:type..integer {return(250);}
generic-association {return(251);}
generic-formal-parameter {return(252);}
generic-.actual-paraineter {return(253);}
length-.clause {return(254);}
length-clause:size {return(255);}
length-.clause:small {return(256);}
length-.clause:strng-.size {return(257);}
length-.clause:strg-.size-.access f return(258);}
length..clause strg-.size-.access f return(259);}
length..clause:strg-...sze-task f return(260);}
enunv..reprclause {return(261);)
record-.repr-.clause {return(262);}
alignment-clause {return(263);}
component-clause {return(264);}
address-clause {return(265);}
code-statement {return(266);
START-.COMPILATION: {return(995);
:END-.COMPILATION {return(996);}

C-14

{ return(997); }

[1+ { return(998); }
[\n] { return(999); }

C.3 Sample mk.lspec Listing

The following listing is the Lex specification and driver routine that is used to gen-

erate the lex.spec file from the input grammar. The regular expressions are designed to

recognize every character expected in the grammar file. Token 12 will match any string of

lowercase letters, underscores, and semicolons in quotes. Token 12 represents an Ada pri-

mary feature that requires an entry in the lex-spec file. The mklspec main driver routine

first prints out the constant header information (Lex parameters) for the Lex specification.

Then, for each recognized feature in the input grammar, an "expression action" pair is

printed. The action is to return a unique token number that is determined by the value of

"Counter". After the entire grammar has been processed, the constant trailer information

for the lex.spec file is printed out.

%%/

V{ return(1); 1
{ return(2); 1
{ return(3); }
{ return(4); 1

\7{ return(5); 1
V{ return(6); 1

{ return(7); 1
{ return(8); 1
{ return(9); 1
{ eturn(10); 1
{ return(n"); I

\"[]*[a-z_\:]+[]*\" { return(12); 1
[A-Za-z_\:]+{ return(13); 1
[0-9]+ { return(14); 1
1]+ { return(998); I
[\n] { return(999); I

C-15

#include <string.h>
mainoC

int Token, Counter, Length; 1* DECLARE VARIABLES *
char *Output; 1* DECLARE OUTPUT STRING *
Counter = 1; /* INTIALIZE TOKEN COUNTER *

printf ("%so", "%a 6000 \n"'); /* PRINT LEX PARAMETERS *
printf ("%ss, 11%e 7000 \n"');
printf ("%s", "'An 4000 \n"');
printf ("'As", 11%p 24000 \n"');
printf ("'As"l, "70 .5000 \n"t);
printf ("%ss", "'1%7 \nil);

while ((Token yylexo) !=0) { /* WHILE NOT END-OF-FILE... *
if (Token 12){

/* STRIP OF QUOTE MARKS AND PRINT EXPRESSION AND ACTION *

Length =strien Cyytext);
yytextC--Length] \1
Output = &yytext~l];
printf ("'A-40s{ return(%3u); }\n", Output, Counter);
Counter++;}

/* PRINT REMAINING DEFAULT ENTRIES TO THE LEX-SPEC FILE *

printf ("STARTCOMPILATION: (returnC995);)\n"l);
printf C":END-COMPILATION (returnC996);)\n"l);
printf ("Ea-z\\:\\-]+ { return(997); }\n"l);
printf ("1[)+ f return(998); }\n");
printf ("E\\n) f return(999); }\nl);

C-16

Appendix D. Source Code

D.1 Shell Script

FILE HEADER

#-- DATE: 31 Aug 90
#-- VERSION: 1.0

#-- TITLE: ALIANT Prototype Shell Script

#-- FILENAME: runa
#-- COORDINATOR: Capt James S. Marr

#-- PROJECT: GCS-90D Thesis
#-- OPERATING SYSTEM: 4.3 BSD UNIX
#-- LANGUAGE: UNIX Shell Script

#-- FILE PROCESSING: This file can be executed by entering 'csh runa'. --

#-- To eliminate the requirement to enter 'csh', the file can be made --

#-- independently executable by running the command 'chmod 755 runa'. --

#-- After executing the 'chmod' command, the script can be executed by --

#-- simply entering 'runa*'.
#-- CONTENTS: This file contains the UNIX shell script that is used --

#-- to execute the ALIANT prototype.

#-- FUNCTION: This script provides the interface between the Gen test case --

#-- generator and the ALIANT Ada code. Error checking is conducted on
#-- input parameters and informative error messages are produced when --

#*-- necessary. There are two basic ways in which the ALIANT prototype is --
#-- ' xecuted. The following algorithms illustrate the methods where --

#-- parameterl is the input grammar filename (minus '.gen'), parav-eter2 --

#-- is the requested number of combinations to generate, and pax"neter3 --

#-- is the batch input filename:

Method 1:
put <parameterl>.gen file into g.temp file --

append "* <parameter2> compilation" to gtemp file --

execute gen.exe* with input from g-temp and --

output directed to gen-out

if gen.exe* terminated normally
overwrite contents of g-temp with <parameter2> --

execute aliant-driver.exe*

Method 2:
put <parameterl>.gen file into g.temp file --

append "* <parameter2> compilation" to g.temp file
execute gen.exe* with input from g-temp and --

output directed to gen-out
if gen.exe* terminated normally

overwrite contents of g-temp with <parameter2> --

execute aliant-driver.exe* with input from --

D-i

<parameter3> and output directed to alnt-out --

#-- If two valid input parameters are provided, the first method is used. --

#-- If three valid input parameters are provided, the second method is --

#i-- use.

BEGIN SCRIPT

OUTPUT DATE AND TIME TO ALNTOUT FILE

unset noclobber

date > alnt-out

set noclobber

IF THERE ARE NO ARGUMENTS OR ONLY ONE, DISPLAY ERROR MESSAGE

if ($#argv == 0 II $#argv == 1) then
clear
echo *
echo * Missing Gen filename and/or combinations argument\(s\), try again.

echo *

echo *-....Format: runa* fni num \[fn2\]
echo *----. Where : fnl.gen is the Gen input file,
echo *----------- num is the desired number of combinations, and

echo *----------- fn2 is an optional ALIANT batch input file.

echo *

IF THERE ARE TWO ARGUMENTS, CONTINUE PROCESSING SCRIPT

else if ($#argv == 2) then

clear

IF THE TWO ARGUMENTS ARE VALID, EXECUTE ALIANT PROTOTYPE

if (-e $argv[1].gen && $argv[2) > 0) then
unset noclobber

echo---------------------------
echo -- Gen execution in progress -
echo

cat $argv[l].gen > g-temp
echo * $argv[2] compilation >> gtemp

gen.exe*<gtemp>gen-out && echo $argv[2)>g-temp && aliant-driver.exe*

set noclobber

IF BOTH ARGUMENTS ARE NOT VALID, DISPLAY AN ERROR MESSAGE

else

echo *
echo * Gen filename provided does not exist and/or number

D-2

echo * of combinations provided not greater than 0, try again.

echo *

endif

IF THERE ARE THREE ARGUMENTS, CONTINUE PROCESSING SCRIPT

else if ($#argv == 3) then

IF ALL THREE ARGUMENTS ARE VALID, EXECUTE ALIANT PROTOTYPE

if (-e $argv[l].gen == 1 && $argv[2] > 0 & -e $argv[3= 1) then
unset noclobber

cat $argv[l].gen > g-temp
echo * $argv[2) compilation >> g.temp

gen.exe*<g-temp>gen-out && echo $argvE2]>gtemp &

aliant-driver.exe*<$argv[3]>>alnt-out

set noclobber

IF ALL THREE ARGUMENTS ARE NOT VALID, DISPLAY AN ERROR MESSAGE

else

clear

echo *
echo * Gen filename provided does not exist and/or number
echo * of combinations provided not greater than 0 and/or

echo * ALIANT filename provided does not exist, try again.

echo *

endif

IF THERE ARE MORE THAN THREE ARGUMENTS, DISPLAY AN ERROR MESSAGE

else

clear
echo *

echo * Too many arguments provided, try again.

echo *
echo *---- Formet: runa* fnl num \[fn2\]
echo *---- Where : fnl.gen is the Gen input file,
echo *----------- um is the desired number of combinations, and
echo *----------- fn2 is an optional ALIANT batch input file.

echo *
endif

OUTPUT DATE AND TIME TO THE ALNTOUT FILE

date >> alnt-out

END OF SCRIPT

D-3

D.2 Ada Code

FILE HEADER

-- DATE: 31 Aug 90

-- VERSION: 1.0
-- TITLE: ALIANT Prototype

-- FILENAME: aliant.a

-- COORDINATOR: Capt James S. Harr
-- PROJECT: GCS-90D Thesis

-- OPERATING SYSTEM: 4.3 BSD UNIX
-- LANGUAGE: Elxsi Verdix Ada (Version 5.5)

-- FILE PROCESSING: This file is compiled using the Verdix command string --
-- 'ada aliant.a'. The TextIO and Math library packages are required --

-- for compilation and linking. The object code is linked using the --

-- Verdix command string 'a.ld aliant-driver -o aliant-driver.exe'. --

-- The filename 'yylex' must also be available for linking. This file --

-- contains, among other things, the C procedures 'yylex', 'opengen', --

-- and 'closegen'. These procedures are linked to the Ada code using --

-- pragma interface. The Verdix 'ada.lib' file must contain a link --

-- entry for the 'yylex' file. Further details are included in the --

-- documentation for the LexPkg source code. --

-- CONTENTS:

-- LexPkg - Ada package that provides interface to C procedures. --

-- ParameterPkg - Ada package that contains parameters used throughout --

-- the ALIANT prototype.

-- FeaturesPkg - Ada package that contains the Ada features table. --

-- MatrixPkg - Ada package that contains the combination storage --

-- matrix and associated access procedures. --

-- ALIANTDriver - Ada procedure that controls the ALIANT execution. --

-- FUNCTION: This file contains all the Ada code supporting the ALIANT --

-- prototype. This code works in conjunction with a test case generator --

-- (written in C) via intermediate ASCII data files. The control of --

-- the interface is handled by a UNIX shell script. The shell script --

-- executes the test case generator, storing the results in a data file. --

-- Providing the test case generator terminated normally, the ALIANT --

-- driver is executed to analyze the output stored in the intermediate --

-- data file.

PACKAGE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0

-- NAME: LexPkg

-- PACKAGE TYPE: Specification only.

-- CONTENTS: Specification of function Yylex and procedures Opengen and --

D-4

-- Closegen.
-- DESCRIPTION: This package specifies the interface to the three --

-- subunits mentioned abovo using 'pragma interface'. These subunits --

-- are written in the C language and linked to the ALIANT prototype. --

Assuming the object code for Yylex, Opengen, and Closegen is located --

-- in a file called 'yylex'; the following entry in the Verdix library
-- (ada.lib) will allow these routines to be linked with the Ada code: --

'WITH1:LINK:yylex;'.
ENCAPSULATED OBJECTS: None.

-- OBJECT OPERATORS: None.

-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: None,
-- REQUIRED LIBRARY UNITS: None.
-- CALLING MODULES:
-- Yylex called by: ALIANTDriver
-- Opengen called by: ALIANTDriver

Closegen called by: ALIANTDriver.ALIANTWrapup --

-- AUTHOR: Capt James S. Marr --

-- HISTORY: None.

package LexPkg is

function Yylex return integer;
procedure Opengen;
procedure Closegen;

private

pragma interface (C, Yylex);
pragma interface (C, Opengen);
pragma interface (C, Closegen);

end LexPkg;

PACKAGE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0

-- NAME: ParameterPkg
-- PACKAGE TYPE: Specification and Body.

-- CONTENTS: This package dcclares several constant and variable
-- parameters and types used throughout the ALIANT prototype, --

-- a Screen-Delay procedure, and two ALIANT-unique exceptions. --

-- DESCRIPTION: The specification contains the constants requiring --

-- visibility throughout the ALIANT prototype. Two of the parameters --

D-5

-- are accessed via function calls to Get-.Max-.Features and -

G- et-.Max-.Combinat ions. These two encapsulated objects are initialized -

-- when the Parameter-Pkg body is elaborated.
-- The Max-.Features is initialized by reading the lex..spec file to -

-- determine how many features there are. The Max-Combinations is -

-- initialized by reauing the g-temp file to determine how many -

-- combinations were requested by the user. A calculation is then made -

-- to determine the approximate storage space that will be required to -

-- hold the expected number of unique combinations generated. -

-- ENCAPSULATED OBJECTS: Max-.Features and Max-.Combinations. -

-- OBJECT OPERATORS: Get-.Max-.Features and Get-.MaxCombinations. -

-- FILES READ: Lex.Spec-.File anLd Gen-.Combination-File. -

-- FILES WRITTEN: None.
-- HARDWARE INPUT: File input.
-- HARDWARE OUTPUT: CRT.
-- REQUIRED LIBRARY UNITS: Body requires Text-.IO and Math.,-
-- MODULES CALLED (by executable package body):

-- Text-.IO.new-.page
-- Text-..new-line
-- Text-IO.put-line
-- Text-IO.open
-- Math.sqrt
-- Text-O.get-.line
-- Text-I0.skip-.line
-- Text-IO.close
-- Combination-IO.get (instantiation of Text_.IO.integer-.io) -

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

package Paramneter-Pkg is

Feature.Length :constant := 40;
Lex-.Spec-.Filenane :constant string (1- 8) "lex-spec";
Database-Filenaie :constant string (.1- 7) : afis-dbm ;
Gen-.Combination-.Filename :constant string (1- 6) : "g-.temp";

subtype Feature-.String is string (1. .Feature.Length);
subtype Parameter-Type is integer range 1- 3500;

procedure Screen-.Delay;
function Get-Max-,Features return Parameter-.Type;
function Get-Max-Combinations return Paraneter-Type;

Fatal-Exception exception;
Partial-.Exception exception;

end Parameter.Ykg;

D-6

with text-io;
with math;
package body Parameter-.Pkg is

Max-~Features :Parameter-.Type;
Max-Combinations Parametcr-Type;
Input-Combinations :natural;
Feature-.Count natural;
String-.Length :natural;

Lex-.SpecFile text-.io .file.type;
Gen..Combination-File text-.io .file.type;
Input-String :Parameter-.Pkg.Feature-.String :=(others =>'

------------------------------ ---------------------

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Screen-.Delay
-- DESCRIPTION: This procedure is used in several places in the ALIANT -

-- prototype to provide a time delay for displaying user input error -

-- messages on the terminal screen.
-- ALGORITHM: Execute the Ada delay statement.

-- PASSED VARIABLES: None.
REURS GLBA oVRIBeSUE: Nn.-
GLBA RETURNS:S None: None

-- GLOBAL VARIABLES CHANGED: None. -

-- FILES RIE: None. -

-- FILES WRIEAD: None.
-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: None.
-- MODULES CALLED: None.

-- CALLING MODULES: -

-- Matrix-.Pkg.Display-.Matrix
-- Matrix-.Pkg .Load-Database

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: 0(1) since it just executes a single statement. -

--

procedure Screen-.Delay is

begin

delay (duration (1.6));

end Screen-Delay;

D-7

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Get-Max-Features
-- DESCRIPTION: This function is used to get the current value of -

-- Parameter.Pkg .Max-.Features.

-- ALGORITHM: Return the encapsulated package variable Max-.Features. -

-- PASSED VARIABLES: None.
-- RETURNS: Parameter-.Pkg .Max-.Features

-- GLOBAL VARIABLES USED: Parameter-.Pkg.Max-.Features -

-- GLOBAL VARIABLES CHANGED: None.
-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: None.
-- MODULES CALLED: None.
-- CALLING MODULES:

-- Declarative parts in bodies of:
-- Features-Pkg
-- Matrix-.Pkg
-- ALIANT-.Driver

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(l) since just a single statement is executed. -

function Get-Max-features return Parameter-Type is

begin

return (Max_.Features);

end Get-.Max-.Features;

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Get-.MaxComhinations
-- DESCRIPTION: This function is used to get the current value of -

-- Pararneter-Pkg .Miax-Combinations.
-- ALGORITHM: Return the encapsulated package variable Max-.Combinations. -

-- PASSED VARIABLES: None.
-- RETURNS: Paramet er-.Pkg .Max-.Combinat ions
-- GLOBAL VARIABLES USED: Parameter-Pkg.Max-.Combinations -

D-8

-- GLOBAL VARIABLES CHANGED: None.
-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: None.

-- MODULES CALLED: None.
-- CALLING MODULES: Declarative part in body of MatrixPkg. --

-- AUTHOR: Capt James S. Marr

-- HISTORY: None.

-- ORDER-OF ANALYSIS: 0(1) since just a single statement is executed. --

function GetMaxCombinations return Parameter-Type is

begin

return (Max-Combinations);

end GetMaxCombinations;

package CombinationIO is new text-io.integer-io (natural);

begin

-- DISPLAY OPENING ALIANT MESSAGE --

text-io.newpage;
text-io.new-line;
text-io.put.line (" **)*

text-io.put-line (" ** ALIANT initialization in progress **");
text-io.put-line C" **

text-io.new.line;

-- BEGIN BLOCK TO DETERMINE VALUE FOR MAX-FEATURES --

begin

-- OPEN LEXSPECFILE AND SKIP LEX PARAMETER LINES --

text-io.open (LexSpecFile, text-io.in-file,
ParameterPkg.LexSpec_Filename);

while (Input-String (l..2) /= "UY") loop
textio.get-line (LexSpecFile, Input-String, String-Length);

end loop;

-- COUNT THE NUMBER OF FEATURES IN THE LEXSPECFILE --

D-9

Feature-Count 0;
while (Input-.String (1- 18) b"START..COMPILATION:") loop

text..io.get-.line CLex.Spec.File, Input-String, String-.Length);
text-o.skip.line (Lex..Spec-.File);
Feature-.Count :=Feature-.Count + 1;

end loop;
text-.io. close (Lex_.Spec..File);
Max-.Features :=Feature-.Count - 1;

exception
when text-.io.name-error =>

text-io .new..line;
text..io .put..line C"<Parameter-.Pkg body>");
text-io.put.line C"**NAME EXCEPTION ERROR RAISED WHILE **)

text..io.put..line C" l TRYING TO OPEN LEX SPECIFICATION **)

text-o.put-.line C"**FILE. CHECK FILENAME IN PARAMETER **)

text.io.put-.line C"**PACKAGE AND CURRENT DIRECTORY.
text-.io .new..line;
raise Parameter.Ykg.Fatal-Exception;

when text-o.end-.error =>
textio .new..line;
text-io.put-.line C"<Paraineter-.Pkg body>");
text-.io.put..line C"**PREMATURE END-OF-FILE REACHED WHILE ***"1);
text..io.put-line C" l READING LEX SPECIFICATION FILE.
text-.io.put-.line C"**CHECK FORMAT OF LEX SPECIFICATION. **)

text-.io .new..line;
text-.io .close CLex..Spec-.File);
raise Parateter-.Pkg .Fatal-.Except ion;

when constraint-error =>
text-.io .new..line;
text-.io.put..line C" <Parameter-Pkg body>");
text-io.put-.line C"**NUMBER OF FEATURES IS OUT OF RANGE. **)

text..io.put..line C"**CHECK LEX SPECIFICATION FILE AND **)

text-o.put-.line C"'* PARAMETER TYPE IN PARAMETER PACKAGE. **)

text..io .new.line;

raise Parameter-.Pkg.Fatal-Exception;
when others =>

text-io .new.line;

text..io.put.line C" <Paraxneter..Pkg body. 1>");
text..io.put-line C"**UNKNOWN EXCEPTION RAISED **)

text-io.put-.line C"**WHILE INITIALIZING ALIANT. **)

text-.io .new-line;

raise;
end;

-- BEGIN BLOCK TO DETERMINE VALUE FOR MAX-.COMBINATIONS -

begin

-GET INPUT-COMBINATIONS FROM GEN-COMBINATIONFILE -

D-10

text-.io .open (Gen-.Combination-.File, text-.io. in-file,
Parameter-.Pkg .Gen..Combination-.Filename);

CoibinationIO . get (Gen..Combination-.File, Input-.Combinations);
text-.io.close CGen-.Combination-.File);

-CALCULATE AN ESTIMATED VALUE FOR MAX-.COMBINATIONS BASED -

-- ON THE VALUE OF INPUT-.COMBINATIONS. THIS CALCULATION -

-- REDUCES THE AMOUNT OF UNUSED SPACE IN THE COMBINATION -

-MATRIX FOR LARGE VALUES OF INPUT-COMBINATIONS. -

Max-.Combinations :=integerC
math.sqrz (1200.0 * float Clnput..Combinations)));

exception
when text-io.name-error =>

text-io.new-.line;
text..io.putline C"<Parameter..Ykg body>");
text-.io.put..line C"**NAME EXCEPTION ERROR RAISED WHILE **)

text..io.put..line C"**TRYING TO OPEN THE GEN COMBINATION **)

text.io.put-.line C"**FILE. CHECK FILENAME IN PARAMETER **)

text.io.put..line C"**PACKAGE AND CURRENT DIRECTORY.
text-io .new-.line;
raise Paraieter.Pkg. Fatal-Exception;

when text-o.end-.error =>
text..io .new..line;
text-.io.put-.line C"<Paraneter.Pkg body>");
text-.io.put..line C"**PREMATURE END-OF-FILE REACHED WHILE **)

text..io.put-line C"**READING GEN COMBINATION FILE. CHECK **)

text..io.put-line C"**FORMAT OF GEN COMBINATION FILE.

text-io .new.line;
text-.io. close CGen_.ConbinationFile);

when text-.io.data..error =>
text-.io .new-.line;
text.io .put-line C'<Paraneter-.Pkg body. 1>");
text-io.put-line C"**NUMBER OF COMBINATIONS IS OUT OF
text-.io.put-line C"**RANGE. CHECK GEN COMBINATION FILE AND **)

text-io.put-.line C"**PARAMETER TYPE IN PARAMETER PACKAGE. **)

text-.io .new-.line;
text-io. close (Gen..Combination_.File);
raise Parameter-Pkg. Fatal-.Exception;

when constraint-.error =>
text-.io .new-.line;
text-o.put-.line C <Parameter-.Pkg body.2>");
text-io.put..line C"**NUMBER OF COMBINATIONS IS OUT OF
text-io.put-.line C"**RANGE. CHECK GEN COMBINATION FILE AND **)

text..io.put-.line C"**PARAMETER TYPE IN PARAMETER PACKAGE. **)

text-.io .new-.line;
raise Parameter-.Pkg .Fatal-.Exception;

when others =>
text-io .new-line;

D11

text.io.put..line ("<Parameter-.Pkg body. 2>");
text-io.put-line C"**UNKNOWN EXCEPTION RAISED **)

text..io.putline C"**WHILE INITIALIZING ALIANT. **)

text..io .new..line;
raise;

end;

end Parameter.Ykg;

PACKAGE HEADER

-- DATE: 31 Aug 90
-- VERSION: i.0

-- NAME: Features.Pkg
-- PACKAGE TYPE: Specification and Body.
-- CONTENTS: This package contains a procedure Load-.Features-.Table and a

-- function Get-Feature.
-- DESCRIPTION: The procedure is used to load the Ada features from the -

-- lex-.spec file into an array of text strings. The function is used -

-- within the ALIANT prototype to access the Ada features. -

-- ENCAPSULATED OBJECTS: Features-.Table -

-- OBJECT OPERATORS: Get-.Feature
-- FILES READ: None. -

-- FILES WRITTEN: None.
-HARDWARE INPUT: None.I
-- HARDWARE OUTPUT: None. -

-- REQUIRED LIBRARY UNITS: Specification requires Parameter-Pkg and -

-- Body requires Text-.IO and Paraineter-Pkg. The pragina elaborate is -

-- used with the Parameter-.Pkg. -

-- AUTHOR. Capt James S. Marr -

-HISTORY: None.

with Paramet er-.Pkg;
package Features-.Pkg is

procedure Load-.Featuiesji'able;
function Get-Feature (Feature-Number :in natural)
return Parametezr.Pkg,Featuire..String;

end Features-.Pkg;

with text-io;
with Parameter-.Pkg;
pragnia elaborate CParaDmeter-'kg);
package body Features-Pkg is

Max-Features :constant Parameter-Pkg. Parameter-.Type

D-12

Parameter-.Pkg. Get-Max-.Features;
Features-.Table : array (1. .Max-Features) of
Parameter-Pkg .Feature-.String;

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Load-.Features-.Table
-- DESCRIPTION: This procedure loads the Ada features from the lex-.spec -

-- file into the Features-.Table.
-- ALGORITHM:

-- open lex..spec file
-- skip Lex parameter lines
-- while not end-of-file lex..spec file

-- read next line of lex-spec file
-- strip off Ada feature and store in Features-.Table -

-- close lex..spec file
-- PASSED VARIABLES: None.
-- RETURNS: None.
-- GLOBAL VARIABLES USED: Parameter-.Pkg.Lex..Spec..Filenvinc -

-- GLOBAL VARIABLES CHANGED: Features.Pkg.Features-.Table -

-- FILES READ: Lex..SpecFile
-- FILES WRITTEN: None.
-- HARDWARE INPUT: File input.
-- HARDWARE OUTPUT: None.
-- MODULES CALLED:

-- Text-.IO.open
-- Text-.10.get-.line
-- Text-IO.close

-- CALLING MODULES: ALIANT.Driver.

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: 0(n) since the procedure is dominated by a loop -

-- that executes once for each feature. Therefore, n is dependent on -

-- the value of MaxFeatures.

procedure Load-.Features-.Table is

String-Length :natural;
Lex..Spec-.File :text-i.o.file..type;
Blanks :constant Pareamter-Pkg.Feature-String

:(others => 1')
Input-.String :Paraqteter-ykg. Feat ure..$tring := Blanks;

begin

-- OPEN LEX..SPEC-.FILE AND SKIP LEX PARAMETER LINES -

text..io.open (Lex-.Spec-File, text-.io. in-.file,
Paranieter.Pkg. Lex..Spec-.Filename);

while (Input-.String (1.-2) /= "U%") loop
text-.io .get-line CLex_.Spec_.File, Input-.String, String-.Length);

end loop;

-- LOAD EACH FEATURE INTO THE FEATURES-TABLE -

for I in 1. .Max-.Features loop
Input-.String := Blanks;
text-io.get.line (Lex..SpecFile, Input_.String, String-.Length);
text-.io. skip-line (Lex.Spec_.File);
Features..Table (I) : Input-String;

end loop;

text-io. close (Lex-.SpecFile);

except ion
when text-o.name-.error =>

text-o.new-.line;
text-io.put-line (U<Features-Pkg.Load-FeaturesTable>");

text-4-o.put-.line C"**NAME EXCEPTION ERROR RAISED WHILE **)

text-io.put-.line C * TRYING TO OPEN LEX SPECIFICATION **)

text..io.put-line C"**FILE. CHECK FILENAME IN PARAMETER ~~*)
text..o.put-line C"**PACKAGE AND CURRENT DIRECTORY.
toxt..io.new..line;
raispi Parameter-.Pkg .Fatal-Except ion;

wahon text-io.end..error =>
textio . new-line;
text-.io .put..line C"<Features-Pkg.Load-eatures-Table>");
text.io.put-.line C"**PREMATURE END-OF-FILE REACHED WHILE **)

text.io.put.line C"**READING LEX SPECIFICATION FILE.
text.io.put.line C"**CHECK FORMAT OF LEX SPECIFICATION. **)

text-.io.new-.line;
text-.io.close (Lex_.Spec_.File);
raise Paranieter-Pkg. Fatal..Exception;

end Load-Features-.Table;

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Get-.Feature
-- DESCRIPTION: This function is used to get a feature string for a -

-- specified feature number.
-- ALGORITHM: Return requested feature string.

D-14

-- PASSED VARIABLES: Feature-Number.

-- RETURNS: Feature-String.
-- GLOBAL VARIABLES USED: FeaturesPkg.FeaturesTable. --

-- GLOBAL VARIABLES CHANGED: None.

-- FILES READ: None.

-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: None.

-- MODULES CALLED: None.

-- CALLING MODULES: MatrixPkg.DisplayMatrix

-- AUTHOR: Capt James S. Marr

-- HISTORY: None.

-- ORDER-OF ANALYSIS: 0(l) since just a single statement is executed. --

function Get-Feature (FeatureNumber : in natural)
return ParanieterPkg.FeatureString is

begin

return Features-Table (FeatureNumber);

end Get-Feature;

end FeaturesPkg;

PACKAGE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0

-- NAME: MatrixPkg
-- PACKAGE TYPE: Specification and Body.

-- CONTENTS: This package contains six procedures used to access the --

-- Combination-Matrix.

-- DESCRIPTION: When the body is elaborated, the declarative part creates --

-- the Combination-Matrix that is used to store the feature counts for --

-- each combination identified in the Gen input file. This package --

-- includes all the necessary procedures to initialize, update, and --

-- retrieve the contents of the CombinationMatrix. --

-- ENCAPSULATED OBJECTS: Combination-Matrix

-- OBJECT OPERATORS: Initialize-Matrix, StartCombination, CouhtFeature, --

-- End-Combination, DisplayMatrix, and Load-Database. --

-- FILES READ: None.

-- FILES WRITTEN: None.

-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: None.

-- REQUIRED LIBRARY UNITS: Body requires TextYO, Features..Pkg, and --

D-35

-- Parameter-.Pkg. Pragnia elaborate is used with the Parameter-.Pkg. -

-- AUTHOR: Capt Jainos S. Marr
-- HISTORY: None.

package Matrix-Pkg is

procedure Initialize-Matrix;
procedure Start-Combinat ion;
procedure Countjeature (Feature..Number :in natural);
procedure End..Combinat ion;
procedure Display-Matrix;
procedure Load-.Database;

end Matrix..Pkg;

with text-.io;

with Features..Pkg;
with Parameter-.Pkg;
pragma elaborate (Paranieter.Pkg);
package body Matrix.Pkg is

Max-.Features :constant Parameter.Pkg .Parameter-.Type

Parameter-Pkg. Get-.Max-.Features;
Max-.Combinat ions : constant Paramet er j'kg .Paramet er-.Type

=Paraxeter.Ykg.Get.Max-Combinat ions;
subtype Comb-.Number.Type is integer

range 0. .Max-.Combinations + 1;
Combination-.Matrix :array (1. .Max_.Combinations,

-1. .Max..Features) of natural;
Current-Comb :Comb-.Number-.Type :=0;

Next-.Comb :Comb..NumberType :1;

Duplicate-.Count :integer :0;
NuilCount :integer :=0;
Number.Comb-.Processed :integer :=0;

package NaturalO is new text-o.integer-io (natural);

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0 -

-- NAME: Initialize-Matrix
-- DESCRIPTION: This procedure performs the initialization of the -

-- Combination-Matrix.
-- ALGORITHM: Using two nested loops, initialize each position of the -

-- Combination-.Matrix to zero.
-- PASSED VARIABLES: None.

D-16

-- RETURNS: None.
-- GLOBAL VARIABLES USED: MatrixPkg.MaxCombinations and --

-- MatrixPkg.MaxFeatures.
-- GLOBAL VARIABLES CHANGED: MatrixPkg.Combination_Matrix --

-- FILES READ: None.
-- FILES WRITTEN: None.

-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: None.
-- MODULES CALLED: None.

-- CALLING MODULES: ALIANTDriver

-- AUTHOR: Capt James S. Marr

-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**2) since the procedure contains two nested --

-- loops. The value of n**2 is actually the product of Max-Features and --

-- Max-Combinations.

procedure Initialize-Matrix is

begin

-- INITIALIZE ALL POSITIONS OF COMBINATION-MATRIX TO ZERO --

for I in 1..MaxCombinations loop
for J in -1..MaxFeatures loop

Combination-Matrix (I,3) := 0;
end loop;

end loop;

end Initialize-Matrix;

MODULE HEADER

-- DATE: 31 Aug 90

-- VERSION: 1.0
-- NAME: Start-Combination
-- DESCRIPTION: This procedure is executed whenever a new combination is --

-- identified. Its purpose is to set appropriate counters and provide --

-- a runtime indication that processing is still in progress.
-- ALGORITHM: Increment Current-Comb and Next-Comb and display a dot on --

-- the user terminal for every 10 combinations identified. --

-- PASSED VARIABLES: None.

RETURN.S: None.
-- GLOBAL VARIABLES USED:

-- MatrixPkg.CurrentComb

-- MatrixPkg.NextComb

MatrixPkg.NumberCombProcessed

D-17

-- GLOBAL VARIABLES CHANGED:

-- MatrixPkg.CurrentComb

-- MatrixPkg.NextComb

MatrixPkg.NumberCombProcessed
-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: CRT.
-- MODULES CALLED:

-- TextIO.put --

-- TextIO.newline
-- TextIO.put-line --

-- CALLING MODULES: ALIANTDriver

-- AUTHOR: Capt James S. Marr --

-- HISTORY: None.

ORDER-OF ANALYSIS: 0(1) since only sequential statements are executed. -

procedure Star!_Combination is

begin

-- INCREMENT COMBINATION COUNTERS AND DISPLAY --

-- A DOT FOR EVERY TEN COMBINATIONS PROCESSED --

Current-Comb := Next-Comb;
Next-Comb := Next-Comb + 1;

if ((NumberComb-Processed mod 10) 0) then

textio.put (".");
end if;
NumberComb-Processed := NumberCombProcessed + 1;

exception
when constraint-error =>

text-io.new.line;
text-io.put-line ("<MatrixPkg.StartCombination>");

text-io.put-line (" * TOO MANY GEN COMBINATIONS. *");

text-io.put-line (" * PARTIAL RESULTS FOLLOW. *");

text-io.new-line;
Current-Comb := Current-Comb - 1;

raise ParameterPkg.PartialException;

end Start-Combination;

MODULE HEADER

-- DATE: 31 Aug 90

D-18

-- VERSION: 1.0
-- NAME: Count-.Feature
-- DESCRIPTION: This procedure is used to increment a specified feature -

-- count for the current combination being processed. -

-- ALGORITHM: Increment feature count by subscripting Combination-Matrix -

-- with Current-Comb and Feature-.Number.
-- PASSED VARIABLES: Feature-.Number
-- RETUaNS: None.
-- GLOBAL VARIABLES USED: Matrix-.Pkg.Current-Comb -

-- GLOBAL VARIABLES CHANGED: Matrix-.Pkg.Combination-.Matrix -

-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: CRT (exception messages)
-- MODULES CALLED: Text-.IO.new-line, Text-.IO.putjline (exception.-)
-- CALLING MODULES: ALIANT-.Driver

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(l) since only sequential statements executed. -

procedure Count-Feature (Feature-Number : in natural) is

begin

-- INCREMENT APPROPRIATE FEATURE COUNT BY ONE -

Combination-.Matrix(Current-Comb,Feature_.Number):
Combination-M.atrix(CurrentComb,Feature-Number) + 1;

exception
when constraint-.error =>

text-.io .new-line;
if (Current-.Comb = 0) then

text-o.put-.line C"<Matrix_.Pkg.CountFeature>");
text-io.put-line C"**INCORRECT FORMAT IN GEN INPUT **)

text..io.put-line C"**FILE. CHECK THE GEN GRAMMAR. **)

text-.io .new..line;
raise Parameter.Ykg. Fatal-.Exception;

else
text-.io.put-.line C"<Matrix-Pkg.Count-Feature>");
text..io.put.line C"**FEATURE NUMBER OUT OF RANGE IN **)

text-o.put-.line C * COUNT-.FEATURE. CHECK LEX SPEC **)

text-.io.put-line C"**AND PARAMETER PACKAGE.
text-io .new..line;
raise Paranieter..Pkg.Fatal-Exception;

end if;

D-19

end CountFeature;

MODULE HEADER

-- DATE: 31 Aug 90

-- VERSION: 1.0
-- NAME: End-Combination

-- DESCRIPTION: This procedure is executed whenever the end of a --

-- combination is detected. The ended combination is checked to see --

-- if it is null or a duplicate of a previous combination. A null --

-- combination is one in which all feature counts are zero. A duplicate --

-- combination is one in which each feature count 'matches' the --

-- corresponding fealure count of another combination. In this context, --

-- a 'match' is when both feature counts are zero or both are non-zero. --

-- ALGORITHM:
-- check for null combination and count non-zero feature counts --

-- store the. feature count total for this combination --

-- if this is null combination, increment null counter --

-- if not first combination and not null, check for duplicate --

-- if it is duplicate

-- increment duplicate count for matching combination --

-- increment total duplicate counter --

-- zero out current combination row of matrix --

-- if combination was null or duplicate, decrement combination pointer --

-- PASSED VARIABLES: None.

-- RETURNS: None. --

-- GLOBAL VARIABLES USED:

-- MatrixPkg.CombinationMatrix --

MatrixPkg.CurrentComb
-- MatrixPkg.NullCount --

-- MatrixPkg.DuplicateCount

-- MatrixPkg.MaxFeatures
-- GLOBAL VARIABLES CHANGED:

-- MatrixPkg.CombinationMatrix

-- MatrixPkg.CurrentComb

-- MatrixPkg.NullCount

-- MatrixPkg.DuplicateCount

-- FILES READ: None.

-- FILES WRITTEN: None.

-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: Nnne. --

-- MODULES CALLED: None.

-- CALLING MODULES: ALIANTDriver

-- AUTHOR: Capt Janes S. Marr

-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**2) since the procedure is dominated by two --

-- nested loops for checking duplicate combinations. The value for n is --

-- dependent on the number of combinations already in the table and the --

D-20

-- number of foaturan that must b compared baforo a non-duplicato in --

-- diiscovarad. lt tho boat cane, tho first, foaturo may minmatch; but --

-- in the worst: case the last posoiblo combination in being chockod --

-- against a full combination mat;rix in which there in no duplicate. --

-- In this worst caoe, ho actual order-of in: --

-- O(MaxCombinationE * MaxlFaturos) --

proceoduro EndCombinat ion in

NullComb booloan t;ruo;

D)uplicatoComb : booloan : truo;
Foaturo_Count : natural 0;

bogin

-- COUNT TIE NUMBER OF NON-ZERO FEATURE COUNTS AND
-- SET THE NULLCOMB FLAG TO FALSE IF AT LEAST ONE --

-- FEATURE COUNT IS NON-ZERO.

for 3 in I. .Max-Foaturos loop

if (CombinationMatrix (CurrontComnbJ) /0 0) t;hon
NullComb := false;
FoaturoCount := FoaturoCount + 1;

end if;
and loop;

-- STORE VIE NUMBER OF FEATURES COUNTED FOR THIS COMBINATION --

CombinationMatrix (CurrentComb, -1) :. Foaturo.,Count;

-- INCREMENT THE NULLCOMB COUNTER IF NECESSARY --

if NullComb thon
NullCount := Null.Count + 1;

end if;

-- DETERMINE IF THIS COMBINATION IS A DUPLICATE --

if ((Current_-Comb > 1) and (not NullComb)) thon
for I in I..(CurrontColb - 1) loop

DuplicatoComb := true;

-- COMPARE FEATURE COUNTS, ONE BY ONE, BETWEEN --

-- CURRENT COMBINATION AND ANOTHER COMBINATION --

UNTIL ONE OR THE OTHER (HOT BOTH) IS ZERO. --

for J in 1..MaxFoaturos loop
if (((CombinationMatrix (CurrentComb,J)

0) and (CombinationMatrix (I,J)

D-21

/= 0)) or
((Combination.Matrix (CurrontComb, J)

/0) andc (Combin~ationMatrix (I,J)

0))) thon
Duplicnte.o!Comb :! falno;
exit;

ond if;
end loop;

-- IF CURRENT COMBINATION IS A DUPLICATE, INCREMENT THE --

-- DUPLICATE COUNTER OF THE OTHER COMBINATION AND EXIT --

-- ENTIRE DUPLICATE CHECKING LOOP. --

if DuplicatoComb then
CombinationMatrix (1,0) := Combintion.Matrix (1,0) i 1;
oxit;

end if;
end loop ;

also

-- IF CURRENT COMBINATION IS THE FIRST --

-- ONE OR IS NULL, IT CAN'T BE A DUPLICATE

DuplicatoComb := falso;
end if;

-- IF CURRENT COMBINATION IS A DUPLICATE, --

-- INCREMENT DUPLICATE COUNT AND ZERO OUT --

-- ALL POSITIONS OF THIS MATRIX ROW. --

if Duplicate-,Comb thon
Duplicate.Count := DuplicatoCount + 1;
for J in -1..MaxFoaturos loop

CombinationMatrix (CurrentComb,J) := 0;
end loop;

ond if;

IF CURRENT COMBINATION IS DUPLICATE --

-- OR NULL, DECREMENT CURRENTCOMB. --

if (NullComb or Duplicato,.Comb) then
NoxtComb := CurrentComb;

CurrentComb := CurrentComb - 1;
end if ;

end EndCombination;

MODULE HEADER

-- DATE: 31 Aug 90

D-22

-- VERSION: 1.0

-- NAME: Display-Matrix

-- DESCRIPTION: This procedure is used to display selected combinations. --

-- The combinations are selected based on two threshold values: a dupli- --

-- cation threshold and a feature threshold. The duplication threshold --

-- will select any combinations that have a duplicate count greater or --

-- equal to the specified threshold value. The feature threshold will --

-- select any combinations that have the same or less number of features --

-- as the threshold value. The selected combinations are displayed to --

-- show the features included in each combination. --

-- ALGORITHM: --

-- display ALIANT Processing Statistics

-- determine if user would like to select combinations --

-- while selection is desired --

-- get the threshold values --

-- display the number of selected combinations --

-- determine if user would like to display combinations --

-- if display is desired, display combinations --

-- determine if more selection is desired --

-- PASSED VARIABLES: None.

-- RETURNS: None.
-- GLOBAL VARIABLES USED: -

-- MatrixPkg.NumberCombProcessed

-- MatrixPkg.NullCount

-- MatrixPkg.DuplicateCount
-- MatrixPkg.CurrentComb

-- MatrixPkg.CombinationMatrix
-- MatrixPkg.MaxFeatures

-- GLOBAL VARIABLES CHANGED: None.

-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: Keyboard.

-- HARDWARE OUTPUT: CRT.

-- MODULES CALLED:

-- DisplayMatrix.GetUserInput

-- TextIO.new-line

-- TextIO.put-line

-- TextIO.new-page

-- TextIO.put
-- MatrixPkg.NaturalIO.get (instantiation of TextIO.integer-io) --

-- TextIO.skip-line
-- ParameterPkg.ScreenDelay

-- DisplayMatrix.CheckPaging

-- FeaturesPkg. GetFeature
-- CALLING MODULES: ALIANTDriver.ALIANTWrapup --

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**3) since the procedure is dominated by three --

-- nested loops. The dominant portion is when the user chooses --

D-23

-- threshold values that result in all combinations being displayed. --

-- In the worst case, the actual order-of is:
-- O(g * Max-Combinations * Max-Features); where g represents the number --

-- of times the user decides to input new threshold values. --

procedure Display-Matrix is

Unique-Comb . CombNumberType : 0;
Last . natural;
Duplicate-Threshold : natural;
Feature-Threshold : natural;
Paging-Counter : natural;
Combination-Count : natural;
User-Input : string (i..50);
Paging-Selected boolean;
Quit-Paging . boolean;
subtype Option-Type is integer range 1..3;

MODULE HEADER --

-- DATE: 31 Aug 90 --

-- VERSION: 1.0

NAME: GetUserInput --

-- DESCRIPTION: This is a local procedure to Display-Matrix which was --

-- created to avoid duplication of code. The overall purpose is to --

-- display a selected prompt and then get the user response. --

-- ALGORITHM:
-- display prompt based on option parameter

-- get the user input

-- PASSED VARIABLES: Option

-- RETURNS: None. --

-- GLOBAL VARIABLES USED:

-- DisplayMatrix.UserInput

-- DisplayMatrix.Last
-- GLOBAL VARIABLES CHANGED:

-- DisplayMatrix.UserInput

-- DisplayMatrix.Last

-- FILES READ: None.

-- FILES WRITTEN: None.
-- HARDWARE INPUT: Keyboard.

-- HARDWARE OUTPUT: CRT.

-- MODULES CALLED:
-- TextIO.newline

-- TextIO.put
-- TextIO.put-line --

-- TextIO.get.line
-- TextIO.skip-line

-- CALLING MODULES: --

D-24

-- Matrix-.Pkg .Display-.Jatrix
-- Matrix-.Pkg .Display-.Matrix .Check-.Paging

-- AUTHOR: Capt James S. Marr
HISTORY: None.

-- ORDER-OF ANALYSIS: 0(1) since only sequential statements are used. -

procedure Get..User-Input (Option : Option-Type) is

begin

-- DISPLAY APPROPRIATE MESSAGE BASED ON OPTION -

text-io .new-line;
case Option is

when 1 =>
text-io.put (" Enter Ty to "1 &

"SELECT combinations for display >>")
when 2 =>

text-o.put-.line (1" Enter 'y' to DISPLAY selected" &
"combinat ions,");

text..io.put (1" or 'pI to DISPLAY with paging >>")
when 3 =>

text-.io.put-line (" Press RETURN to continue paging,");
text..io.put (C" or enter 'q' to quit paging >>)

end case;

-- GET USER INPUT FROM KEYBOARD -

User-.Input (1) :
text-.io.get-.line (User-Input, Last);
if (Last > 49) then

text-io. skip.line;
end if;

exception
when text-io.end.error =>

text-.io.new-.line (2);
text-.io.put..line C" <Matrix-.Pkg.Display-.Matrix." &

"Get-.UserInput>");
text-.io.put-line C"**END-OF-FILE REACHED ON STD INPUT. **)

text-.io.put-.line C"**PROBABLY INVALID ENTRIES IN THE **)

text-.io.put..line C"**ALIANT BATCH INPUT FILE (IF USED).***");
textio .nrew-l.iLLO,
raise Parameter-Pkg .Fatal-Exception;

end Get-.UserInput;

D-25

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: Check-Paging
-- DESCRIPTION: This is a local procedure to Display-.Matrix. It is used -

-- to control the paging of CRT output.
-- ALGORITHM:

if paging is selected
-- increment the page counter
-- if the screen is full

-- reset the page counter
-- determine if user wants to quit paging -

-- if user wants to quit paging, set flag -

-- PASSED VARIABLES: None.
-- RETURNS: None.
-- GLOBAL VARIABLES USED:

-- Display.Matrix. Paging..Selected
-- Display-.Matrix .Paging-.Counter
-- Display-.Matrix .User-Input

-- GLOBAL VARIABLES CHANGED:
-- Display.Matrix. Paging-.Counter
-- Display-.Matri~c. User-.Input
-- Display-.Matrix .Quit-.Paging

-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: Keyboard.
-- HARDWARE OUTPUT: CRT.
MO A3DULES CALLED:

-- Display-.Matrix .Get-User-Input
-- Text-.IO .new-.line

-- CALLING MODULES:
-- Matrix-.Pkg .Display-.Matrix

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: 0(1) since only sequential statements are used. -

procedure Check-Paging is

begin

-- AND CHECK FOR END-OF-PAGE. IF END-OF-PAGE, -

-- THEN DETERMINE IF CONTINUED PAGING DESIRED. -

if Paging-.Selected then

D-26

Paging-.Counter := Paging-Counter + 1;
if Paging-Counter >= 21 then

Paging-Counter := 0;
Get-.User-lnput (3);
if C(User-Input (1) = Iq') or (User-.Input (1) =Q))then

Quit-.Paging :=true;
end if;
text-io new-.line;

end if;
end if;

end Check-Paging;

begin

-- DISPLAY ALIANT PROCESSING STATISTICS --

text-.io .new-line;
text-.io.put..line C"***ALIANT Processing Statistics ***)

text-.io.put-iine C"Number of combinations processed: "&
integer'image (Number-.CorbProcessed));

text.io.put-.line (" Null combination count: Of &
integer'image (Null-Count));

text-io.put..line (C" Duplicate combination count: 11 &
integer'image (Duplicate-Count));

text-.io.put-.line (C" Resulting combinations: "1 &
integer'image (CurrentComb));

text-io.put-line C"********************")
text-o.put.line C""& ascii.bel);

-- DETERMINE IF USER WANTS TO SELECT COMBINATIONS FOR DISPLAY -

Get_.User_.Input (1);
while (CUser-.Input~l) = y') or (User-Inputl) 'Y')) loop

-PROMPT USER FOR DUPLICATION-THRESHOLD -

-- UNTIL VALID VALUE IS PROVIDED. -

loop
begin

text..io .new.page;
text-.io .new-.line;
text~io.put("l Enter duplication threshold >>)
NaturalO.get (Duplicate-Threshold);
text-io. skip..line;
exit;

exception
when text-io.dataerror =>

text-.io .new-.line;
text-io.put-line (**INVALID THRESHOLD VALUE -- "&

D-27

"MUST BE A NATURAL NUMBER **");
text..io. skip-line;
Paraxneter.J'kg .Screen-.Delay;

when text-.io.end-.error =>
text-io.new-line (2);
text-o.put-.line C <Matrix-.Pkg.Display-Matrix. 1>");
text.io.put..line C"**END-OF-FILE REACHED ON STDII &

1INPUT. ***"1);
text..io.put-line C"**PROBABLY INVALID ENTRIES" &

1IN THE ***");
text-io.put-.line ("**ALIANT BATCH INPUT FILE" &

(IF USED).***");
textio .new-.line;
raise Paraneter-.Pkg. Fatal-Exception;

end;
end loop;

-PROMPT USER FOR FEATURE-THRESHOLD -

-- UNTIL VALID VALUE IS PROVIDED. -

loop
begin

text-.io .new-page;
text-io .new-line;
textjio.putC" Enter feature threshold >">
NaturalO.get (Feature_.Threshold);
textio . skip.line;
exit;

except ion
when text-o.data-.error =>

text-.io .new-ine;
text-.io.put..line C* INVALID THRESHOLD VALUE -- "&

"MUST BE A NATURAL NUMBER*")
text-.io. skip..line;
Paraneter-.Pkg .Screen-.Delay;

when text-.io.end-.error =>
text..io.newline (2);
text..io .put-.line (C" <Matrix-Pkg.Display-.Matrix.2>"1);
text-o.put-.line C" ** END-OF-FILE REACHED ON STD"1 &

1INPUT. ***"1);
text..io.put-line C(** PROBABLY INVALID ENTRIES" &

1IN THE ***"1);
text-.io.put-line C" ** ALIANT BATCH INPUT FILE" &

1(IF USED).***");
text-io .new-line;
raise Parameter..kg.Fatal-ExceDtion;

end;
end loop;

D-28

-- COUNT THE NUMBER OF COMBINATIONS THAT SATISFY TIUE --

-- DESIRED DUPLICATE AND FEATURE THRESHOLD CONSTRATNTS --

Combination-Count := 0;
Aor I in I..CurrentComb loop

if ((CombinationMatrix (1,0) >= Duplicate-Threshold) and
(CombinationMatrix (I,-I) <= FeatureTlhreshold)) then
Combination-Count := CombinY.ion..Count 1;

end if;
end loop;

-- DISPLAY THE NUMBER OF COMBINATIONS COUNTED --

text-io .new-page;
zextio .new-line;

if (CombinationCount 1) then
text-io.putline C" There is I combination ,ith a " &

"duplication count >= "

integer'image (Duplicate-Threshold) & ",");
text,.io.put-line (" and a feature count <= " &
integer'image (Feature-Threshold) & ". ");

else
text.io.put_1ine (" There are "

integer'image (CombinationCount) &
' combinations with a duplication :ount >=
integer'image (Duplicate-Threshold) & 1,) ;

text-io.put-line (" and a feature count <=
integerlimage (FeatureThreshold) & ".");

end if ;

-- IF THERE IS AT LEAST ON.F COMBINATION SELECTED, --

-- PROMPT THE USER FOR DISPLAY AND PAGING OPTIONS

if (Combination-Count /= 0) then
Get_User..Input (2);

Paging-Selected := false;
QuitPaging := false;
if ((UserInput(1) = 'y') or (UserInput(l) = 'Y') or

(UserInput(1) = 'p') or (UserinpuCi) = 'P')) then
if ((User-Input(I) = 'p') or (UserInput(1) 'P')) then

PaginSeolected := true;
?agingCounter : 0;

end it;
teXt..io newpage;

DISPLAY SELECTED COMBINATICNS UNTIL END --

OR UNTIL PAGING OPTION IS TERMINATED. --

Paging-Loop;
for I in I..Current_Comb loop

D-29

-- IF COMBINATION MEETS THRESHOLD CONSTRAINTS, --

-- DISPLAY COMBINATION INFO FOLLOWED BY FEATURES --

if ((CombinationMatrix (1,0) >=
DaplicateThreshold) and
(Combination_Matrix (I,-I) <=
FeatureThreshold)) then
text-io.new.line;
Check-Paging;
exit Paging-Loop when Quit-Paging;
text-io.put.line (" Combination " &

integer'image (I) & ":)

Check-Paging;
exit Paging-Loop when Quit-Paging;
textio.put-line (" C"

integer'image (Combination-Matrix (1,0)) &
" duplicate(s])");

Check-Paging;
exit Paging-Loop when Quit-Paging;
text-io.new-line;

Check-Paging;
exit Paging-Loop when Quit-Paging;

-- FOR EACH FEATURE IN SELECTED COMBINATION, --

-- DISPLAY FEATURE FOLLOWED BY FEATURE COUNT --

for J in 1..MaxFeatures loop
if (CoinbinationMatrix (I,) /= 0) then

text-io.put-line C" " &

FeaturesPkg.GetFeature (3) &
" (count:" &
integer'image (CombinationMatrix (I,J))
& ")") ;

Check-Paging;
exit Paging-Loop when Quit-Paging;

end if;
end loop;

end if;
end loop Paging-Loop;

end if;
end if;
GetUserInput (1);

end loop;

end Display-Matrix;

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0

D-30

-- NAME: Load-Database

-- DESCRIPTION: This procedure loads the AFTS database according to user --

-- specified threshold values. The threshold values are used in the --

-- same manner as in MatrixPkg.DisplayMatrix. --

-- ALGORITHM:

-- determine if user wants to load database

-- if database load is desired

-- get the duplicate and feature threshold values --

-- display 'loading database' message
-- load selected combinations to the AFIS database --

-- display 'loading complete' message

-- PASSED VARIABLES: None.

-- RETURNS: None.
-- GLOBAL VARIABLES USED:

-- ParameterPkg.DatabaseFilename
-- MatrixPkg.CurrentComb

-- MatrixPkg.Combination..Matrix

-- GLOBAL VARIABLES CHANGED: None.

-- FILES READ: None.
-- FILES WRITTEN: AFIS Database.

-- HARDWARE INPUT. Keyboard.

-- HARDWARE OUTPUT: CRT, File output.
-- MODULES CALLED:

-- TextIO.new.page
-- TextIO.new-line

-- TextIO.put
-- Text IO.get-line

-- Text-IO.skip.line
-- Matrix.Pkg.NaturalIO.get (instantiation of TextIO.integer-io) --

-- ParameterPkg.ScreenDelay
-- TextIO.create

-- TextIO.put.line

-- TextIO.close
CALLING MODULES: ALIANTDriver.ALIANTWrapup --

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**2) since the procedure is dominated by two --

-- nested loops. In the worst case when all combinations are written --

-- to the database, the actual order-of could be as high as: --

-- O(MaxCombinations * Max-Features).

procedure Load-Database is

Database-File : text-io.file.type;
Last : natural;

Duplicate-Threshold : natural;
Feature-Threshold : natural;

D-31

Combination-Count natural 0;
User-Input string (i..50);

begin

-- DETERMINE IF USER WANTS TO LOAD AFIS DATABASE --

text-io.new.page;
text-io.newline;
textio.put (" Enter 'y' to load AFIS database >> ")
UserInput (1) '

textio.getline (User-Input, Last);
if (Last > 49) then

text-io.skipline;
end if;

if ((UserInput (1) = 'y') or (User-Input (1) = 'Y')) then

-- PROMPT USER FOR DUPLICATION-THRESHOLD--

-- UNTIL VALID VALUE IS PROVIDED. --

loop
begin

text-io.new.page;
text-io.new.line;
text-io.put(" Enter duplication threshold" &

" for database >> ");
NaturaliO.get (Duplicate-Threshold);
text-io.skip-line;
exit;

exception
when text-io.data-error =>

text-io.new.line;
textio.put-line (" ** INVALID THRESHOLD VALUE -- "

"MUST BE A NATURAL NUMBER **");
text-io.skipline;
ParameterPkg.ScreenDelay;

end;

end loop;

-- PROMPT USER FOR FEATURE-THRESHOLD --

-- UNTIL VALID VALUE IS PROVIDED. --

loop

text-io.new.page;
text-io.new-line;
textio.put(" Enter feature threshold for database >> ");
NaturalIO.get (Feature-Threshold);

D-32

text-.io.skip-line;
exit;

exception
when text-.io.data..error =>

text-.io .new-line;
text-.io.put-.line (C" ** INVALID THRESHOLD VALUE -- "&

"MUST BE A NATURAL NUMBER **11);
text-io .skip..line;
Parametr-.Pkg. Screen-Delay;

end;

end loop;

-DISPLAY 'LOADING DATABASE' MESSAGE --

textio .new-.page;
text-.io .new..line;
text-o.put-.line C' Loading AFIS database... 1);

-- CREATE DATABASE FILE AND INITIALIZE FILE HEADER -

text.io. create (Database-File, text.io .out-.f ile,
Parameter-.Pkg .DatabaseFilename);

text..io.put-line (Database-File, ">>> AFIS DATABASE FILE <<<<");

-- SEARCH COMBINATIONS FOR DESIRED SELECTION --

f or I in 1. .Current-Comb loop
if CCCoinbinationM.atrix (1,0) >= Duplicate-Threshold) and

(Combination-.Matrix M1-0) <= Feature.Threshold)) then
text..io.new..line (Database-.File);

-FOR EACH SELECTED COMBINATION, OUTPUT A UNIQUE -

-- RECORD IDENTIFIER (USE COMBINATION NUMBER). -

text..io.put (Database-File, integerlilaage (I) & 11: 11);

-FOR EACH FEATURE OF SELECTED COMBINATIONS, -

OUTPUT A '1' IS THE FEATURE COUNT IS NON-ZERO -

-- OR A. '0' IS THE FEATURE COUNT IS ZERO. -

for J in 1. .Max-Features loop
if CComdbination-.Matrix (IM = 0) then

text..io.put (Database-.File, integerlimage (0));
else

text-io.put (Database-.Le, inee9ing 1)
end if;

end loop;
Combination-.ount :=Combination-Count + 1;

end if;

D-33

end loop;

-- CLOSE THE DATABASE FILE AND DISPLAY COMPLETION MESSAGE -

text-.io. close (Database-.File);
text-io .new..line;
text..io.put (C" ... Ths AFIS database has been loaded with "&

integerlirnage (Combination-Count) & " record");
if (Combination-Count = 1) then

text--j'o.put.line C.)
else

text-io.put.line (Its.");
end if;

end if;

exception
when text-.io.name-.error =>

text-.io .new..line;
text..io.put..linE:(<Matrix.Ykg.Load.Database>");
text-io.put-line C"**NAME EXCEPTION ERROR RAISED WHILE ***"1);
text..io.put-line C"**TRYING TO CREATE DATABASE FILE. **)

text-io.put.line C"**CHECK FILENAME IN PARAMETER
text.io.put..line C"**PACKAGE FOR PROPER FORMAT.
text-.io .new..line;
raise Parameter..Pkg.Fatal-Exception;

when text-io.end-.error =>
text-.io.new-.line C2);
text-.io .put~line C"1 <MatrixPkg.LoadDatabase>");
text..io.putline C" ** END-OF-FILE REACHED ON STD INPUT. ***");
text-.io.put..line ("**PROBABLY INVALID ENTRIES IN THE ***"1);

text.io.put-.line C"**ALIANT BATCH INPUT FILE (IF USED).***");
text-.io .new..linei
raise Parameter-.P 'F 7atai..Exception;

when others =>
text..io .new..line;
text-.io.put-line (C" <Matrix_.Pkg.L ,ad_.Database>"1);
text-.io.put-.line C" ** UNKNOWN EXCEPTION RAISED **)

text-.io.put11no C"**WHILE LOADING DATABASE. **)

text-.io. .new..line;
text..io.cJlose (Database_.File);
raisF P ararnetcr-Pkg .Fatal-Except ion;

end Load-Databass;

end Matrix-.Pkg;

-- MAIN DRIVER HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0

D-34

-- NAME: ALIANTDriver

-- DESCRIPTION: This procedure is the main driver for the ALIANT --

-- prototype. The ALIANT prototype reads in combinations from Gen
-- via an ASCII file. Actually, the entire ALIANT prototype includes --

-- the Gen software and the UNIX script file that ties the Gen and --

-- Ada code together. This driver is responsible for calling the --

-- various procedures that analyze the Ada feature combinations. --

-- ALGORITHM:

-- call MatrixPkg.InitializeMatrix

-- call FeaturesPkg.LoadFeaturesTable
-- call LexPkg.Opengen

-- call LexPkg.Yylex (return Token)
-- whilb (not end of Gen input file) loop --

- - case Token is

-- when feature token =>
-- call MatrixPkg.CountFeature (send Token) --

-- when start token =>
-- call MatrixPkg.StartCombination --

-- when end token =>

-- call MatrixPkg.EndCombination --

-- when others =>

-- display error message

-- end case

-- call LexPkg.Yylex (return Token)

-- end while loop

-- call ALIANTWrapup
-- PASSED VARIABLES: None.

-- RETURNS: None.
-- GLOBAL VARIABLES USED: None.

-- GLOBAL VARIABLES CHANGED: None.

-- FILES READ: None.

-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.

-- HARDWARE OUTPUT: CRT.

-- MODULES CALLED:
-- MatrixPkg.InitializeMatrix
-- FeaturesPkg.LoadFeaturesTable

-- LexPkg.Opengen
-- TextIO.new-page
-- TextIO.new-line

-- TextIO.putline

-- LexPkg.Yylex
-- MatrixPkg.CountFeature

-- MatrixPkg.StartCombinatLon

-- MatrixPkg.EndCombination

-- ALIANTDriver.ALIANTWrapup
-- REQUIRED LIBRARY UNITS:

-- MatrixPkg
FeaturesPkg

-- ParameterPkg

-- TextIO

D-35

-- Lex-Pkg

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**3) since t procedure is dominated by the -

-- order-of for ALIANT.Wrapup.

with Matrix-Pkg;
with Features.Pkg;
with Parameter.Pkg;
with text.io;
with Lex.Ykg;
procedure ALIANT-.Driver is

Token :natural;
Max-Features : constant Parameter-.Pkg.Parameter.3ype

= Parameter..Pkg .Get ..Max..Features;

MODULE HEADER

-- DATE: 31 Aug 90
-- VERSION: 1.0
-- NAME: ALIANT.Wrapup
-- DESCRIPTION: This procedure is local to the ALIANT-.Driver and was -

-- created to eliminate duplication of code. It contains those actions -

-- that take place after combination processing is completed. -

-- ALGORITHM:
-- close the Gen input file
-- call Matrix-.Pkg.Display-MJatrix
-- call Matrix-Pkg.Load-Database
-- display a normal termination message

-- PASSED VARIABLES: None.
-- RETURNS: None.
-- GLOBAL VARIABLES USED: None.
-- GLOBAL VARIABLES CHANGED: None.
-- FILES READ: None.
-- FILES WRITTEN: None.
-- HARDWARE INPUT: None.
-- HARDWARE OUTPUT: CRT.
-- MODULES CALLED:

-- Text-.IO.new-line
-- Lex-.Pkg.Closegen
-- Matrix-.Pkg .Display-.Matrix
-- Matrix-.Pkg .Load-Database
-- Text-.0.put-.line

-- CALLING MODULES: ALIANT-Driver

D-36

-- AUTHOR: Capt James S. Marr
-- HISTORY: None.

-- ORDER-OF ANALYSIS: O(n**3) since this procedure is dominated by the -

-- order-of for Matrix-.Pkg.Display-.Matrix.

procedure ALIANT.Wrapup is

begin

-- CLOSE THE GEN INPUT FILE, -

-- CALL DISPLAY-.MATRIX AND LOAD-DATABASE, -

-THEN DISPLAY NORMAL TERMINATION MESSAGE -

text-.io .new-line;
Lex-.Pkg. Closegen;
Matrix-.Pkg .Display-.Matrix;
Matrix-Pkg. Load..Database;
text-.io .new-line;
text-io.put.li-ne("*************")
text.io.put.line (*Exiting ALIANT driver**)
text..io.put-lineC"**************)

end ALIANT.Wrapup;

begin

__ PERFORM INITIALIZATION PROCEDURES AND OPEN THE GEN INPUT FILE -

Matrix-.Pkg. Initialize-.Matrix;
Features-Pkg .Load..Features..Table;

Lex-Pkg.Opengen;

-- DISPLAY PROCESSING MESSAGE --

text-io .new-page;
text..io.new-.line;
text-io.put-laneC"************************")
text..io.put..line C"1 ** Processing Gen combinations, please wait ...
text-o.put-.line C(**************************)

-PROCESS EACH TOKEN IN THE GEN INPUT FILE UNTIL END-OF-FILE --

Token := Lex-Pkg.Yylex;
while (Token /= 0) loop

- - IF THE TOKEN IS A FEATURE, CALL COUNT-FEATURE -

D-37

if (Token >= 1) and (Token <= Max-.Features) then
Matrix..Pkg .Count-~Feature (Token);

-- OTHERWISE, TAKE THE APPROPRIATE ACTION -

else
case Token is

when 995 => Hatrix-kg.Start-Combination;
when 996 => Natrix.Pkg.End-.Combination;
when 998. .999 => null; -- blanks and carriage return
when others =>

text-io.put-.line " *Undefined Token #" &
integer'image (Token) &
"1, regenerate lex-spec file from input grammar.**)

end case;
end if;
Token :=Lex-.Pkg.Yylex;

end loop;
A LIA NT..Wrapup;

exception
when Parameter.Pkg .Fatal-Except ion =>

text-.io .newjline;
textjo.put-.line "************"&

text..io.put-.linc "* Exiting ALIANT driver" &
"due to fatal exception **"1);

text-.io.putjline "************"&

when Paraxneter..Pkg.Partial..Exception => ALIANL-Wrapup;
when others =>

text.-io .newjline;
text..io.put-.line ("**************"&

text-.io.put.line "**Exiting ALIANT driver due "&
"to unknown exception **"1);

textjo.put-.line ("**************"&

text-io .newjline;
raise;

end ALIANL-Driver;

D-38

Appendix E. Input Grammars

This appendix contains the input grammars used in the ALIANT prototype research.

The grammars are in a format compatible with the Gen software, which is used to generate

'alid "sentences" or programs described by a grammar. The first grammar, Adageni, was

annotated by reducing the right hand side of each Ada production to a literal string in

quotes, if it contained any terminal symbols. As a result, most productions are never

"reached" during test case generation. They are left in the grammar for consistency and

later modification. The second grammar, Adagen2, was annotated using the list of some

297 "primary features" as a guide. There are still many productions that are never reached

during test case generation. Some of the Adagen2 productions include alternative symbols

with specified randomness percentages.

E.1 Adageni Grammar

I**************************** ADAGENI ***********************************/

graphic-character C "graphic-character ")

basic-graphic-character = ("basic-graphic-character ")

basic-character = ("basic-character ")

identifier = ("identifier ")

letter-ordigit = ("letter-or.digit ")

letter = ("letter ")

numeric-literal =(deeima'Llj.teral I .basedliteral)

decimal-literal = "decimal-literal ")

E-1

integer ("integer ")

exponent = ("exponent ")

based-literal ("based-literal ")

base = "base ")

based-integer C "based-integer ")

extended_digit = ("extendeddigit ")

character-literal ("character-literal ")

string-literal = "string-literal ")

pragma = ("pragma ")

argument-association = C "argument-association ")

basic-declaration =
object-declaration I % number-declaration
I % type-declaration I % subtype-declaration
I % subprogram-declaration I .package-declaration
I % task-declaration I % generic-declaration
I 'A exception-declaration I ' generic-instantiation
I % renaming-declaration I ' deferred-constant-declaration)

object-declaration = "object-declaration ")

number-declaration = "number-declaration ")

identifier-list = ("identifier-list ")

type-declaration = (full-type-declaration
I ' incomplete-typedeclaration I ' private.type-declaration)

ful!_type-declaration = "full-type-declaration ")

type-definition = (
enumeration-type-definition I % integer-type-definition
I ' real-type-definition I % array-type-definition
I % record-type-definition I % access.type-definition
I ' derived-type-definition)

subtype-declaration = ("subtype-declaration ")

subtype-indica-tion = "subtype-indication ")

type-mark = ("typemark ")

E-2

constraint C
range-.constraint I %floating-.point-.constraint

I A ixed-point-.constraint I % index-.constraint
% ' discriminant-constraint)

derived..type-definition =C"derived..typedefinition")

range-.constraint =C"range-.constraint")

range C"range")

enumerat ion..type-definit ion C"enumeration-.type-.definit ion")

enumeration.literal-specification =C"enumeration.literal..specification")

enumeration-literal. "enumeration-literal")

integer-.type..definition C"integer-.type-.definition")

real-type-definition C
floating..point..constraint I% fixed-point-.constraint)

floating-.point-constraint C
floating-accuracy-definition C "I'.range-.constraint))

floating-.accuracy..efinition =C"floating-.accuracy..definition")

fixed-point-.constraint C
fixed-.accuracy-.definition C "I% range-.constraint))

f.-Led-.accuracy-definition C"fixed-.accuracy.definition")

array-type-definition C
unconstrained-array-definition I %. constrained-array..definition)

unconstrained-array-.definition C"unconstrained-.axray-.defi.nition")

constrained..array-definition =C"constrained-array..Aefinition")

index-subtype-definition =C"index..subtype-definition")

index-constraint C"index-constraint")

discrete.range =C"discrete.range")

record..type-.definition =("record-type-.definition")

componentlist C"comiponent-.list")

component-declaration C"component-declaration")

E-3

component-.subtypedefinition C"corponent-.subtypedefinition)

discriminant-part C"discrininant-.part")

discriminant-specification = C discriminant-.specification)

discriminant-.constraint C"discriminant..constraint")

discriminant-association = C discriminant-association ")

variant-part = C "variant-.part")

variant C"variant")

choice C"choice ")

access-.type-.definition =C"access-.type-.definition")

incomplete..type-declaration C"incomplete.type-.declaration)

declarative-part C
C "Ibasic-declarat. .- item more-basic-.decl)
C "Ilater-.declarative-.item more-.later-.decj.)

I***more..basic-decl and more-ater.Aecl added for Gen ****

more-.basic-decl C " % basic-declarative.item more-.basic-decl)

more-jlater-decl = Y"I later-de,.larative-.item morejlaterdec.

basic-.declarative..jtem C basic..declaration
I % representation-.clause I % use-.clause)

later-.declarativeitem = C body
I % subprogram~declaration I %. package-declaration
% ' task-.declaration I % generic-.declaration

I% use-clause I % generic-.instantiation)

body (proper-.body I % body-.stub)

proper-body C subprogram-.body I% package-body I Y. task-.body)

namre C simple-.namne
I% characterliteral I %. operator-symbol
I% indexed-.component I % slice
% selected-.component j attribute)

simple-name Cidentifier)

prefix =Cname I % function-call)

EA4

indexed-componen "indexed-component ")

slice ("slice ")

selected-component ("selected-component ")

selector C "selector ")

attribute = ("attribute ")

attribute-_designator = ("attribute-designator ")

aggregate - ("aggregate ")

component-association = ("component-association ")

expressic Ci "expression ")

relation = ("relation ")

simple-expression C "simple-expression ")

term = ("term")

factor = ("factor")

primary = ("primary ")

logical-operator C "logical-operator ")

relational-operator = ("relational-operator ")

binary.adding-operator C "binary-adding.operator ")

unary-adding.operator = ("unary-addingoperator ")

multiplying-operator = C "multiplying-operator ")

highest-precede:tce.operator = C "highest-precedence-operator ")

type-conversion = "type-conversion ")

qualified-expression = ("qualified-expression ")

allocator = "allocator ")

sequence-of-statements - statement (.. I 'h statement more-statements))

/******* more-statements added for Gen ****/

more-statements= (" statement morestatemeits)

]'-5

statement =
C "" I ' label more-labels) C simple-statement I % compound-statement))

/******* more-labels added for Gen *******f

more-labels = C "" I % label more-labels)

simple-statement C null-statement
I % assignmentstatement I % procedure.call-statement
I exit-statement I % return-statement
I goto-statement I % entry-callstatement
I % delay-statement I % abort-statement

. raise-statement % 7 code-statement)

compound-statement =(
iTfstatement I . case-statement
I % loop-statement I % block-statement
I % accept-statement I % select-statement)

label = ("label ")

null-statement = ("null-statement ")

assignment-statement = ("assignment-statement ")

if-statement ("if-statement ")

condition = ("condition ")

casestatement = "casestatement ")

case-statement-alternative = C "case-statement-alternative ")

loop-statement = ("loop-statement "1)

iteration-scheme = ("iteration-scheme ")

loop-parameter-specification = ("loop-parameter-specification ")

block-statement = C "block-statement ")

exit-statement C "exit-statement ")

return-statement ("return-statement ")

goto-statement = "goto-statement ")

subprogram-declaration = (subprogram-specification)

subprogram- specification C "subprograzmspecification ")

E-G

designator = identifier I % operator-symbol)

operator-symbol (stringliteral)

formal-part = ("formal-part ")

parameter-specification = ("parameter-specification ")

mode = ("mode ")

subprogram-body = ("subprogram-body ")

procedure-call-statement = ("procedure-call-statement ")

function-call = ("function-call ")

actual-parameter-part =("actual-parameter-part ")

parameter-association = ("parameter-association ")

formal-parameter = C "formal-parameter ")

actual-parameter = C "actual-parameter ")

package-declaration = C package-specification)

package-specification C "package-specification ")

package-body C "package-body ")

private-type-declaration = C "private-type-declaration ")

deferred-constant-declaration C "deferred-constant-declaration ")

use-clause C "use-clause ")

renaming-declaration C "renaming-declaration ")

task-declaration C taskspecification)

task-specification = ("task-specification ")

task body = "taskbody ")

cntry. aclaraon = ("en1try-declaration)

entry-call-statement C "entry-call-statement ")

accept-statement ("acceptstatement ")

E-7

entry-index = C expression)

delay-statement C "delay-statement)

select-statement C selective-wait
I % conditional-entry-call I % timed-entry.call)

selective-wait = ("selective-wait ")

select-alternative = ("select-alternative ")

selective-wait-alternative = (accept-alternative
I % delay-alternative % % terminate-alternative)

accept-alternative = (
accept-statement C "" I % sequence-of-statements))

delay-alternative C
delay-statement C .. I % sequence-of-statements))

terminate-alternative C "terminate-alternative)

conditional-entry-call C "conditional-entry-call ")

timed-entry-cal2 C "timedentrycall ")

abort-statement = C "abort-statement)

compilation = ("STARTCOMPILATION: 1
C "' I % compilation-unit more-units) ":ENDCOMPILATION \n")

I**** more-units added for Gen *****/

more-units = ("l I Y compilation-unit more-units)

compilation-unit = (
context-clause library-unit
I % context-clause secondary-unit)

libraryunit = (
subprogram-declaration I % package-declaration
I % generic-declaration % V generic-instantiation
I % subprogram-body)

secondaryunit = (libraryunitbody % % subunit)

library-unit-body = C subprogram-body I % package-body)

context-clause =
I (C with-clause ("" I % use-clause more-use) context-clause))

E-8

more-use added for Gen *****/

more-use = ("' % use-clause more-use)

with-clause = ("with-clause ")

body-stub = ("bodystub ")

subunit = ("subunit ")

exception-declaration = ("exception-declaration ")

exception-handler = C "exceptioxL-handler ")

exception-choice = "exception-choice ")

raisestatement = C "raisestatement ")

generic-declaration = (generic-specification)

generic-specification = (
generic-formal-part subprogram-specification
I . generic-formal-part package-specification)

generic-formal-part = ("generic-formal-part ")

generic-parameter-declaration = ("gene ic-parameter-declaration ")

generic-type-definition ("generic-type-definition ")

generic-instantiation = ("generic-instantiation ")

generic-actual-part = "generic-actualpart ")

generic-association = ("generic-association ")

generic-formal-parameter =("generic-formal-parameter ")

generic-actual-parameter = "generic.actual-parameter ")

representation-clause = (
type-representation-clause I % address-clause)

type-representationclause = length-clause
I % enumeration-representation-clause

length-clause - "length-clause ")

enunieration-representation-clause = C "enumeration-representation-clause ")

E-9

record-r~epresentation-clause =("record-representation-.clause")

alignentcause -("alignment-.clause "1)

component-.clause ('compoent-clause)

address-~clause = "address-..clause")

code-.stateient = C"code-statement")

E.R Ada gen2l Gramniar

/****~********~**~****~ADAGER'2 **s**************/

graphic-character =("graphic-character)

basic-graphic.-character ("basic-graphic.character")

basic-character C"basic-~character")

identifier C"identifier)

letter..or-digit ("letter-.or-d.igit")

letter "letter")

nunteric-literal = Cdecimaljlitoral 1 'I. based~literal)

deciuiai.literaj. = "integer-literal I' "real-literal")

integer ("integer)

exponent =("exponent)

basedliteral C "baseetliteral ")

base = "base")

based-.integer = "Ib~sed-.integer ")

extended-digit C"extendqd i47t)

cliaracter~literal =C"character...literal)

string-.literal =C"string-literal")

E- 10

pragma =("pragma "I%"pragma:argument-association '

"predef-pragma)

argument-.association =C"argument-.associati.on)

basic-declaration=(
object-.declaration I% 14 number-dAeclaration
% ' 3 type-dAeclaration % ' 14 subtype-dAeclaration
I%' 14 subprogram-declaration % ' 10 package-.declaration
%A 10 task-declaration % ' 7 generic-dAeclaration
% ' 8 exception-.declaration % ' 8 generic-.instantiation
% I 7 renamning-.declaration I%' 5 deferred..constant..Aeclaration)

object-dieclaration =C"object..Aecl % ' 35 "object..jnit-.val % ' 30
"lobject-init-val-constrained-array "I% 25 "constant.Aecl.'

number-declaration C"nunber-decl)

identifier-.list =C"identifierlist)

type-.declaration =Cfull-type-.declaration

% ' 50 incomplete-.type..Aeclaration % ' 15 private-.type-.declaration)

full.type-.declaration =C"full-type-decl % "I' discriminant-part))

type-definition C
enumeration-.type-definition I%7 integer-.type..efinition

I Areal-type-.definition % ' array..type-.definitior
% ' recor&..type-.definitioi.. % access..type-definition
% ' derived-type..definition)

subtype-declarat~ion =C"subtype-decl "subtype-indication)

subtype-.indication =C"subtype-indic % "I' constraint))

type-.mark =C"type-.mark)

constraint C
range-constraint % 'A loating-.pointconstraint
% ' fixe&..point..constraint I% index-.constraint
% ' discriminantconstraint)

derived-type..Aefinition C"derived-.type-.def

range-.constraint Crange)

rangea "range-attribute " A"explicit-r.ange)

enumeration-type-.definition =C"enumtype-def)

enumeration-literal-specification =("enumerationliteral-.specification")

E- 11

enumneration-.literal =("enumerationlitera.

integertype-.definition =("integer.type.def")I

real-type.Aefinition C
"floating.point-.type..Aef I%"fixed-point-.type-def)

floating.point-.constraint C
"floating-.point-constraint C .range-.constraint))

floating-accuracy-.definition C"floating-~accuracy-.definition)

fixed-.pint..constraint C
"fixed-.point-.constraint C "I% range-.constraint))

fixed-.accuracydefinition =C"fixed-.accuracy..efinition)

array-.type-definition =CC"array.type-.def " 7. array-.of:access I

"'array-.of:boolean 1 17. "array-.of :integer " I ."array-of:real I%
"array-of :record II %"array...of:task")
Cunconstrained-.array..efinition Iconstrained..array-.definition))

unconstrained-.array-.def inition C t unconstraine&..aray-.def)

c-)nstrained-array-.definition =C"constrained-array-def)

index-subtype-.definition =C"index-subtype..Aefinition)

index-.constraint C"index-constraint)

discrete-.range C"discrete-.range)

z-ecord-.type..einition =CC"record..type-.def "I%"record-.of:access %
'Ire cord-.of :array I%"record-.of :record % "r. tzecord-.o :task)
component-.list)

component-.list =Ccomponent-.declaration I .50 "nuhl..component-.list % I 5
C "I% component-.declar-ation) variant-.part))

component-.declaration =C"component-.decl:default I .
1"component-decl:no.default)1

component.subtype-.definition =C"component-.subtype..efinition")

discriniinant-part Cdiscriminant-specification)

discriminant-.specification =C"discriminant-.spec:default I1 %I
"discriminant-.spec no-default ")

discriminant-constraint - C discriminant-.consta-aint if)

E- 12

discriminant-association ("discriminant-association ")

variant.part "variazt.part " ("" I % variant))

variant = (choice componentlist)

choice = "variant-choice " I 7. "variant-choice-others ")

access-typedefinition = C "access-type-def " I , "access.to:array " I 7.
"access-to:record " i 7. "access-to:task ")

incomplete-type-declaration = C "incompletetype.decl " C "" i
discriminant.part))

declarative-part C
C "" I Y basic-declarative-item mcrebasic-decl)
C "" I 7. later-declarative-item nore-I te,...decl))

/***** more-basic-decl and more-later-decl added for Gen *******/

more-basic-decl C "" I % 80 basic-declarative-item more-basic-decl)

more-later-decl % "" I 7. 80 later-declarative-item more-later-decl)

basic-declarative-item = C basic-declaration
I % 60 representation-clause I % 20 use-clause)

later-declarative-item C body
I % 20 subprogram-declaration % % 20 package-declaration
I % 20 taskdeclaration I %. 10 generic-declaration
I % 13 use-clause i % 4 generic-instantiation)

body = C proper-body I % 80 body-stub)

proper-body = C subprogram-body I % 50 package-body I %. 30 task-body)

name = C simple-name
I % character-literal I % operator-symbol
I %. indexed-component I % slice
I% selected-component I % attribute)

simplename = (identifier)

prefix = (name I % function-call)

indexed-component C "indexed-component ")

slice = "slice)

selected-component = C "selected-component " prefix selector)

E-13

selector = (simple-name I 7. character-literal I7
operator-symbol I % "selector-all ")

attribute = ("attribute " I 7. "predef-attr ")

attribute-designator = ("attribute-designator ")

aggregate (component-association)

component-association = "aggregate " I 7 "named-componentassociation ")

expression = relation % "" i 7. ((logical-operator 7 60 "andthen " I 7. 20
"orelse ") relation)))

relation = simple-expression (C relational-operator simple-expression) I 7
fI 7. ("membership-testin " I 7. "membership-testnotin ")
(range I 7. type-mark)))))

simple-expression C "simple-expression " % "" I 7. unary-addingoperator)
term % "" i '. (binary.adding.operator tern)))

term = C factor % "" I 7 C multiplyingoperator factor)))

factor = (C primary C "" I 7. ("exponentiation " primary))) I 7.
("absolutevalue " primary) I . "not-operator " primary))

primary C numeric-literal I % "null-access-value " I % aggregate I 7.
string-literal I 7. name i % allocator I 7. function-call I 7
type-conversion i 7. qualified-expression I 7. "parenthesized.expr ")

logical-operator C "and-operator " I % "or.operatox " I 7. "xor-operator ")

relational-operator C "equality " I 7. "inequality " I 7. "Lessthan ' I .
"less-thanor-equal-to " 7. "greaterthar " I 7.
"greater-thanor-equalto ")

binary-adding-operator C "addition " I Y. "subtraction " r % "catenation ")

unary-adding-operator ("unary-addition " %. "unary-minus ")

multiplying-operator = C "multiplication " I 7 "division " I .
"rod-operator " I 7. "rem-operator ")

highest-precedence-oporator = C "exponentiation " " 7. absolute-value " 7
"not-operator ")

type-conversion " "type-conversion ")

qualified-expression ("qualifieexpr)

E- 14

allocator C "alloc:qualified-expr " I % "alloc:subtype-indic.constr
i % "alloc:subtype-indic-no-constr ")

sequence-of-statements = (statement % "" I % statement more-statements))

/******* more-statements added for Gen *****I

more-statements = % "" I % 80 statement more-statements)

statement = (

("" I ~ label morelabels) C simple-statement I % compound-statement))

/******* more-labels added for Gen *******/

more-labels C "" I % 80 label more-labels)

simple-statement = (null-statement
I. assignment-statement I % procedure.callstatement

I % exit-statement I % return-statement
I Y. goto.statement % s, entry_call_statement
% delay-statement I % abortstatement

I% raise-statement I % codestatement

compound-statement = C
if-statement I %. case-statement
%, loop-statement I % block-statement

I% accept-statement I % select-statement)

label = "label ")

null-statement = "null_statement ")

assignment-statement C "assignment-statement " expression)

it-statement C "istatement " sequence_.of_statements)

condition = C "condition ")

case-statement = ("case-statement " expression)

case-statement_alternative = "case-statement-alternative ")

loop-statement C "loop.staterent " % "" I % iteration-scheme)
sequence-oflstatements)

iteration-scheme C C "iteration-schemeifor
a~etrsp4 ,cat-'),. ,, .,.rton,_Schen e. whi.,le

condition))

loop-parameter-specification = C "loop.param-spec:up " I %
'loop-param-spec:down ")

E -15

block-statement = ("block-statement " "" I , declarative-part)
sequence-of.statements (I exception-handler))

exit-statement = C "exitstatement ")

return-statement C "return-statement ")

gotostatement = C "gotostatement)

subprogram-declaration C subprogram-specification)

subprogram-specification = C C "subprogram-decl:procedure %
"subprogram.decl:function ") ("" i % formal-part))

designator = identifier I % operator-symbol)

operator-symbol C "user-defined-operator ")

formal-part = C parameter-specification)

parameter-specification = C "subprog-param-spec:default I
"subprog-param-spec:in " I % "subprog-para-spec:in default I
"subprog.param-spec:in-out " I 7. "subprog-param-spec:no-default "
"subprog-param-spec:out ")

mode "mode-in %/ "modein-default % 7
"modejin-out I "mode-out)

subprogram-body = C C "procedure-body " I % "function-body ") C "" I 7.
declarative-part) sequence_of-statements C "" I 7. exceptionhandler))

procedure-call-statement = C "procedure-call-statement ")

function-call C "function-call ")

actual-parameter-part C "actual-parameter-part ")

parameter-association = C "parameter-association)

formal-parameter = C "formal-parameter ")

actual-parameter = ("actual-parameter ")

package-declaratioa C package-specification)

package-specification = C "package-spec % (" % basicdeclarativeitem))

package-body = C "package-body " C "" I % basic-declarative-item)
sequenceof-statements C "" I % exception-handler))

E-16

private.type-.de clarat ion CC "private-type-.decl"
"limited-private-type-.decl ")C" 7.discriminant-.part))

daferred-.constant..Aeclaration C"deferred-constant-.declaration)

use-clause =C"use-clause")

renamning-.declaration C"renanie:entry " I A"rename:exception"I
"rename:object " % I "renamne: package " I%"rename: subprog "I7

"rename: subprog-.or..entry")

task-declaration =Ctask-specification)

task.-specif-'cation (C"task-spec, % "task-.type-spec")
C "I% eritry-declaratioi)C" representation-.clause))

task-body C"task-.body "% "I7 declarative-part) sequence..of..statements
("I% exception-.handler))

entry-.declaration C"entry. 'jeci % "entry.faxnily-.decl
C"entry-parani-spec "I% "entry-.param-.spec:defauJlt " % 7

"ientry-param-.spec~ ii "1 % "entry-paramnspec: indefault" %
"lentry-.param-.spec; in.-out " I % "entry-.param-.spec :no-.default "I'

Ilentry..param..spec-out ")

entry-call-statement C"entry..call..statement")

accept-statemnent =C"accept-~statemnent")

enitry-.index =Cexpression)

delay..statement C "delay..staternent)I

select-.statement =Cselective-wait
I% conditional-.entry..call % 7 timed.extry..call)

selective-wait ("seJ...wait:accept-alt " % 7 "sel-wait:accept-alt-guarded
I% "sel-wait:accept-alt-.unguarded " % 7 "sel-wait:delay-alt "I'

"Isel-.wait~delay-.alt-.guarded "1 % "sel-wait:delay-alt-unguarded "I7

"sel-wait:else-.part " % ' "sel-wait:term-alt " % 7
losel-wait:term-alt-guarded"I I "sel-wait:term-alt-nguarded)

select-.alternative C"select-altornative)

selective~wait-alternative =Caccept-alternative
% ' delay-.alternative % ' terrninate~alternative)

accept-.alternativeC
accept-statement % "I' sequence..of.statcm,.s))

delay-.alternative C

E-17

delay-statement % "" I .sequence-of-statements))

terminate-alternative C "terminate-alternative ")

conditional-entry-call C "conditionalentry-call" entry-call-statement
sequenceof-statements)

timed-entry-call = C "timed-entry-call entry-call-statement
delay-alternative)

abort-statement = ("abort-statement)

compilation = ("START-COMPILATION:
('" I % 0 compilationunit moreunits) ":ENDCOMPILLTION \n")

/* moreunits added for Gen *****/

more-units = ("" I % 90 compilation-unit more-units)

compilation-unit = (
context-clause library-unit
I % context-clause secondary-unit)

library-unit = (
subprogram-declaration I % package-declaration
I % generic-declaration % .genericinstantiation
I % subprogram-body)

secondary-unit C libraryunitbody % % subunit)

library-unit-body = subprogram-body % % package-body)

context_c±ause = C
% % (with-clause C "e j .use-clause more-use) context-clause))

/***** more-use added for Gen * /

more-use = % "" I . 80 use-clause more-use)

with-clause = C "with-clause)

body-stub = C "procedurebody-stub " I % "function-body.stub I .
"package-body-stub " I % "task-body-stub ")

subunit = ("procedure-subunit " I % "function-subunit
I % "package-subunit I "task-subunit)

exception-declaration C "exception-decl ")

exception-handler = C "exception-handler " exception-choice
sequence.of-statements)

E-18

exception-choice =C"exception-choice..others I "predef-except)

raise-.statement ("raise-.statement)

generic-.declaration Cgeneric-.specification)

generic-specification =Cgeneric-.formal-.part C gen-package-spec I7
"1gen-.subprog-.spec I % "gen-.subprogspec:function " I
ligen-.subprog-.spec:procedure))

generic-.formal-paxt Cgeneric-.parameter-.declaration)

generic-parameter-declaration C"gen-.formal-obj :default " I
"gen-formal-obj in I . gen-formal-obj in-default 117
"gen-formal-obj in-.out 117 "gen-formal-.obj no.-default I
"gen-.formal-part "I %. "gen..formal-subprog "I .
"igen-.formal-subprog box-.default 11 1 % "gen-fornial-subprog:=-..default I7
"1gen-formal-type 11 1 7. "gen-formal-type: access 1 17%
"gen-formal-type:array "IS ."gen-formal-type:discrete I 7
"igen-f.ormal-type:fixed-point I %. "gen-foral-type:floating..point 11 7
"gen..formal.type:integer 1 %. "gen-formal-type:lim..private 11 7
"igen-formal-.type:private)

generic.type-.definition C"generic-type-.definition)1

generic-.instantiation =CC"genjfunctionjinstantiation I7
"ogen-package-.instantiation 11 1 % "gen-.procedureinstantiation % 7
"ogen..subprog.instantiation 11) C "" I %. generic-.actual-.part))

generic..actual-part C"gen-.actual-object I ."gen..actual:subprog % 7
"gen-.actual:type " ."gen-.actual:type..access 1 7.
ligen-.actual:type-.array " I % "gen-.actual:type..discrete 1 17.
"gen-actual type-f.ixedpoint 1 %. 1 gen..actual type-float ing-.point % 7
"gen-actual:type-integer 11)

generic-.association C "generic-associatior)

generic-formal-parameter = C"generic-forma1...,.rameter ")

generic-.actual-parameter = C"generic-.actual-.parameter ")

representation-.clause = (
type-.representation-.clause % 7 address.clause)

type-.representation-clause = length-.clause
%. enumeration..reprcsentat-on.cause

I% record-representation-.clause)

length-.clause = C "length-clause 1 1 7. "length..clause:size 11 %
"length-.cJlause:smal. I% "length-.clause:strng-.size % 7

E- 19

"length-clause:strg-size-access I "length-clause:strg-size-access
"length-clause:strg-sizetask)

enumeration-representation-clause = "enum-repr-clause ")

record-representation-clause = "record-repr-clause C "" I
alignment-clause) ("" I % component-clause))

alignment-clause = C "alignment-clause)

component-clause = "component-clause ")

address-clause = C "address-clause ")

code-statement = ("code-statement ")

E-20

Appendix F. ALIANT Operating Instructions and Output

This appendix contains the operating instructions for the ALIANT prototype and

samples of screen/file output. The first two sections contain the step by step interactive

and batch operating instructions. The third sectio contains a complete output sample

from an interactive ALIANT "session". Finally, the fourth section contains sample listings

for the ALIANT support files not provided elsewhere.

F.1 Interactive Operating Instructions

The ALIANT prototype may be executed in interactive mode or batch mode. The

interactive mode will be explained first. To execute ALIANT in interactive mode, er.er

the following statement:

runa* <grammar filename> <number of combinations>

The statement above includes two parameters. The first parameter is the filename of

the input grammar without the ".gen" extension. The extension will be automatically

appended to the first parameter; therefore the actual filename used in this example is

"<grammar filename>.gen". The input grammar must be in Gen compatible format. The

second parameter is the requested number of combinations to generate. This number must

be greater than zero to be accepted by the ALIANT prototype. If the input grammar file-

name does exist and the number of requested combinations is greater than zero, ALIANT

will begin execution.

F-1

The first stage of the prototype is the generation of the feature combinations by Gen.

The following message is displayed while Gen is executing:

-- Gen execution in progress --

When Gen is finished, the ALIANT combination processing begins. For every tenth

combination processed by the ALIANT Ada code, a dot is displayed on the screen as shown

in the following example:

** ** ** * *** ******** ******** * **** *

** ALIANT initialization in progress **

<newpage>

** Processing Gen combinations, please wait... **
*************** (*********************************

When all combinations have been processed, the ALIANT summary statistics are

displayed, an audible tone sounds, and the user is prompted for input as shown below:

***** ALIANT Processing Statistics *****

Number of combinations processed: 200
Null combination count: 0
Duplicate combination count: 78
Resulting combinations: 122

Enter 'y' to SELECT combinations for display >>

F-2

The statistics show how many combinations were processed. The total number processed

is further subdivided into the number that were null, duplicate or resulting combinations.

The audible tone signals the completion of processing, which is helpful if a long interactive

session is running "unattended". At this point, the user must decide if lie/she wants to

select combinations for display. If no selection is desired, a carriage return or any input not

starting with an upper or lower case Y will pass control to the "load database" prompt.

However, entering an upper or lower case Y will cause the following prompt to be displayed:

Enter duplication threshold >>

To sekct combinations for display, two threshold values must be entered. As indicated

by the display above, the first threshold is the duplication threshold. Combinations will

be selected that have duplication counts greater than or equal to the specified duplication

threshold. The number input must be a natural number. After entering a valid threshold

value, a similar prompt is displayed for the feature threshold. Combinations will be selected

that contain no more features than the specified feature threshold. This number must also

be a natural number.

Enter feature threshold >>

After both threshold values have been entered, the number of combinations that

satisfy both limits is displayed followed by the paging prompt:

There are 9 combinations with a duplication count >= 4,

F-3

and a feature count <= 50.

Enter 'y' to DISPLAY selected combinations,
or Cp' to DISPLAY with paging >>

To display selected combinations continuously without paging, an tipper or lower case Y

is entered. If paging is desired, an upper or lower case P is entered. During the paging

option, the user is given the opportunity to terminate paging with the following prompt:

Press RETURN to continue paging,
or enter 'q' to quit paging >>

If there were no combinations to display, the user chose not to display combinations,

or combination display is complete, the following prompt is redisplayed:

Enter 'y' to SELECT combinations for display >>

The selection/display process can be repeated or terminated at this point by entering the

appropriate option.

When the selection/display process is finally terminated, the following prompt is

displayed for the database option:

Enter 'y' to load AFIS database >>

If thi5 option is selected, the duplication and feature threshold values are entered as before

using the following two prompts:

F-4

Enter duplication threshold for database >>

<newpage>

Enter feature threshold for database >>

After successful entry of these threshold values, the database load is started with the first

message shown below, and completed with the second message shown below. The ALIANT

session is then concluded with a normal termination message.

Loading AFIS database...

... The AFIS database has been loaded with 6 records.

** Exiting ALIANT driver **

F.2 Batch Operating Instructions

To execute ALIANT in batch mode, an additional parameter is required at startup

time:

runa* <grammar filename> <number of combinations> <batch filename> &

The batch filename is the complete filename of a text input file containing the entries that

are normally input from the keyboard. A batch job can be executed in background by

appending the ampersand as indicated above. A sample batch file is shown below:

F-5

y (y = select combinations for display)
0 (0 = duplicate threshold)
10 (10 = feature threshold)

y (y = display selected combinations)
n (n = end combination selection)

n (y = select combinations for database)
0 (0 = duplicate threshold)
10 (10 = feature threshold)

This batch file will display (continuously) all combinations with 10 or less features and

load them into the AFIS database. The paging option should never be selected in a batch

file since the batch file would also have to include the correct number of paging responses.

The minimum batch file would simply allow the processing statistics to be recorded:

n (n = don't select combinations for display)
n (n = don't select combinations for database)

The output from an ALIANT batch execution is directed to the alnt-out file. This file

includcs the start and finish date/time as shown below for the minimum batch file example.

Note that in batch mode, the responses input from the batch file do not show up in the

alntout file.

Sat Sep 1 19:04:09 EDT 1990

<newpageO

** ALIANT initialization in progress **

<newpage>

F-6

** Processing Gen combinations, please wait... **

***** ALIANT Processing Statistics *****

Number of combinations processed: 200

Null combination count: 0

Duplicate combination count: 78

Resulting combinations: 122

Enter 'y' to SELECT combinations for display >>

<newpage>

Enter 'y' to load AFIS database >>

** Exiting ALIANT driver **

Sat Sep 1 19:04:30 EDT 1990

F.3 Sample Interactive Output

This section includes a complete example of an ALIANT interactive session. If the

same user responses were provided in a batch input file, an ALIANT batch session would

produce this same output in the alntout file. For clarity, all negative responses use the

letter "n". In actual use, a simple carriage return or other entry will achieve the same

purpose.

-- Gen execution in-progress --

F-7

I

<newpage>

** ALIANT initialization in progress **
**** * ** ********* ***** ** ***** ******

<newpage>

* ***** ******** *** ************ ***** ***** ********

** Processing Gen combinations, please wait... **

* ********** ************* **** ** ******** ** *** *** ** *

***** ALIANT Processing Statistics *****
Number of combinations processed: 200
Null combina-cion count: 0
Duplicate combination count: 78
Resulting combinations: 122

Enter 'y' to SELECT combinations for display >> y

<newpage>

Enter duplication threshold >> 4

<newpage>

Enter feature threshold >> 50

<newpage>

There are 9 combinations with a duplication count >= 4,
and a feature count <= 50.

Enter 'y' to DISPLAY selected combinations,
or 'p' to DISPLAY with paging >> n

Enter 'y' to SELECT combinations for display >> y

<newpage>

Enter duplication threshold >> 3

F-8

<newpage>

Enter feature threshold >> 30

<newpage>

There are 11 combinations with a duplication count >= 3,
and a feature count <= 30.

Enter 'y' to DISPLAY selected combinations,
or 'p' to DISPLAY with paging >> n

Enter 'y' to SELECT combinations for display >> y

<newpage>

Enter duplication threshold >> 5

<newpage>

Enter feature threshold >> 10

<newpage>

There are 6 combinations with a duplication count >= 5,
and a feature count <= 0.

Enter Cy, to DISPLAY selected combinations,
or Cp, to DISPLAY with paging >> p

<newpage>

Combination 4:
(9 duplicate[s])

function-subunit (count: 1)

Combination 9:
(6 duplicate[s])

package-spec (count: 1)
use _clause (count: 1)
withclause (count: 1)

F-9

Combination 25:
(5 duplicate[s])

use-clause (count: 2)
with-clause (count: 1)
function-subunit (count: i)

Combination 29:

Press RETURN to continue paging,
or enter 'q' to quit paging >>

(7 duplicate[s])

procedure-subunit (count: 1)

Combination 40:
(6 duplicate[s])

subprogram-decl:procedure (count: 1)

Combination 44:
(6 duplicate[s])

use-clause (count: 1)
withclause (count: 2)
procedure-subunit (count: 1)

Enter 'y' to SELECT combinations for display >> n

<newpage>

Enter 'y' to load AFIS database >> y

<newpage>

Enter duplication threshold for database >> 5

<newpage>

Enter feature threshold for database >> 10

<newpage>

Loading AFIS database...

F-l0

...The AFIS database has been loaded with 6 records.

*** * * *** ** **** * *** *** **

** Exiting ALIANT driver **
***************** * *** ****

F.4 Sample Support File Formats

This section contains sample listings for the following ALIANT support files not

already displayed: gen-out, g-temp, and afis-db.

gen-out : Contains the output combinations from the Gen software.

START-COMPILATION: subprogram.decl:procedure subprog.paramspec:default
:ENDCOMPILATION

START-COMPILATION: procedure-body genpackage.instantiation gen.actual:type

null-statement if-statement if-statement label case-statement
simple-expression not-operator based-literal multiplication real-literal
exponentiation based-literal and-operator simple-expression unary-addition
based-literal exponentiation string-literal membership-test-in explicit-range
null-statement block-statement label assignment-statement simple-expression
unary-minus aggregate exponentiation based-literal rem-operator absolute-value
based-literal exception-handler exception.choice.others if-statement
null-statement if-statement label null-statement :ENDCOMPILATION

START-COMPILATION: withclauce use-clause package-body null-statement label
label null-statement :ENDCOMPILATION

START-COMPILATION: function-subunit END-COMPILATION

START-COMPILATION: with-clause function-subunit :ENDCOMPILATION

START-COMPILATION: with-clause use-clause with-clause use-clause
subprograt.decl:procedure :ENDCOMPILATION

START-COMPILATION: package-spec object-decl :ENDCOMPILATION

START-COMPILATION: with-clause use-clause with-clause use-clause package-body
null-statement assignment-statement simple-expression unary-addition
not-operator null-access-value division absolute-value nullaccess-value
catenation basedliteral exponentiation null-access-value multiplication
not-operator real-literal membership-test-in explicit-range orelse

F-li

simple-expression null-access-value exponentiation based-literal
catenation null-access.value membership-test-in type-mark exception-handler
exceptionchoiceothers label null-statement null-statement :ENDCOMPILATION

START-COMPILATION: package.spec object-decl :ENDCOMPILATION

START-COMPILATION: with-clause use-clause package.spec :ENDCOMPILATION

g.temp (as input to Gen): When used as input to Gen, this file contains the input

grammar with the generation statement appended (i.e., "* 100 compilation").

graphic-character = ("graphic-character ")

basic-graphiccharacter = ("basic-graphic-character ")

basic-character = ("basic-character ")

identifier = "identifier ")

* (majority removed for brevity, see Appendix E for complete grammar)

alignment-clause) % " I % component-clause))

alignment-clause C "alignment-clause ")

component-clause C "component-clause ")

address-clause = "address-clause ")

code-statement =("code-statement ")

* 100 compilation

F-12

g-temp (as input to ALIANTDriver): When used as input to the ALIANTDriver,

this only contains the number of combinations originally input as parameter 2. The previ-

ous contents of g-temp, the grammar and generation statement, are no longer needed and

are overwritten by a single integer value.

1000

afis-db : Contains the bit matrix for the selected combinations (for brevity, only

two records are shown).

>>>> AFIS DATABASE FILE <<<

4: 0000000 0000000000000000000000000000000
00
00
00
00
0000000010000000000000000000000000000000
0000000000000000000000000000

9: 00000000000000000000000000000000000000

00

000000000 00000000000000000000000000000 00
00
1000010000000000000000000000000000000000
0010000000000000000000000000000000 0000 0

0000000000000000000000000000

F-13

Bibliography

1. Ada Compiler Validation Procedures. Technical Report AD-A210406, Washington D.C.: Ada
Joint Program Office, May 1989.

2. Ada Compiler Validation Summary Report: Verdix Corporation, VADS VAX UNIX, Version
5.5, DEC VAX 11/750. Technical Report AD-A211623, Wright-Patterson AFB, OH: Ada
Validation Facility, 1989.

3. Ada Validation Facility, Aeronautical Systems Division, Air Force Systems Command. DBMS-
ALIANT-PAT Statement of Work - Task Order 17 Wright-Patterson AF3 011, 1988.

4. Aho, A. V. and J. D. Ullman. Principles of Compiler Design. MA: Addison-Wesley Publishing
Company, April 1979.

5. Air Force Armament Laboratory. Ada 9X Project Report/Plan. Technical Report. Washing-
ton: Office of the Under Secretary of Defense for Acquisition, January 1989.

6. Anderson, Chris. "Ada 9X Project." Report to the Public, November 1989.

7. Bass, B. "DOD Issues Revised Ada Compiler Validation Tests," Government Compvter News,
7(18):53 (August 1988).

8. Bazzichi, F. and I. Spadafora. "An Automatic Generator for Compiler Testing," IEEE 7ans-
actions on Software Engineering, SE-8(4):343-353 (July 1982).

9. Berning, Paul T. and others. Automated Compiler Test Case Generaiion. Technical Report
RADC-TR-78-30, Griffis AFB, NY: Naval Air Development Center, 1978.

10. Bertolino, A. and M. Fusani. "Software Validation: A Government-Imposed Challenge to the
State of the Art in Certification," Computer Standards and Interfaces, 6(4):433-436 (1987).

11. Burgess, C. J. "Towards the Automatic Generation of Executable Programs to Test a Pascal
Compiler." In Barnes, D. and P. Brown, editors, Software Engineering 1986, pages 304-316,
London: Peter Perigrinus Ltd., 1986.

12. Carlson, W. E. "Ada: A Promising Beginning," Computer, 14(6):13-15 (June 1981).

13. Craine, D. B. Ada Compiler Evaluation Techniques for Real-Time Avionics Applications. MS
thesis, Air Force Institute of Technology (AFIT), 1987.

14. DeMillo, R. and others. Software Testing and Evaluation. Menlo Park, California: Ben-
jamin/Cummings, 1987.

15. Department of Commerce. Software Validation, Verification, and Testing Technique and Tool
Reference Guide. NBS Special Publication 500-93. Washington D.C.: Government Printing
Office, September 1982.

16 Department of Defense. Reference Manual for the Ada Programming Languafge. ANSI/MIL-
STD 1815A. Washington D.C.: Government Printing Office, January 1983.

17. Drossopoulou, J. Uhl S. and others. An Attribute Grammar for the Semantic Analysis of Ada.

Berlin: Springer-Verlag, 1982.

18, Eilers, D. E-Mail Correspondence. Irvine Compiler-Corp., 11 November 1989.

19. Ganapathi, M. and G. O. Mendal. "Issues in Ada Compiler Technology," Computer, 22(2):52-
60 (February 1089).

3IB-1

20. Goepper, Eric R. A Source Code Analyzer to Predict Compilation Time for Avionics Software
Using Software Science Measures. MS thesis, Air Force Institute of Technology (AFIT), 1988.

21. Goodenough, J. B. "The Ada Comp.'3r Validation Capability," Computer, 14(6):57-64 (June
1981).

22. ----- Ada Compiler Validation Implementers' Guidc. Technical Report, SofTech, Inc.,
1986.

23. --- . "Ada Compiler Validation: An Example of Software Testing Theory and Practice."
In A., Ilabermann and U. Montanari, editors, System Development and Ada - Proceedings of
the CRAI Workshop on Software Factories and Ada, pages 195-232, Berlin, W. G.: Springer-
Verlag, 1987.

24. Herr, C. and others. "Compiler Validation and Reusable Ada Parts for Real-Time, Embedded
Applications," Ada Letters, 8(5):75-86 (Sept/Oct 1988).

25. Homer, W. and R. Schooler. "Independent Testing of Compiler Phases Us:ng a Test Case
Generator," Software Practice and Experience, 19(1):53-62 (January 1989).

26. Johnson, S. C. YACC- Yet Another Compiler Compiler. Technical Report CSTR 32, Murray
Hill, N.J.: Bell Laboratories, 1975.

27. Joyce, D. 0. Validating and Evaluating Ada's Representation Clauses and Implementation-
Dependent Features. MS thesis, Air Force Institute of Technology (AFIT), 1987.

28. Kasten, G. "A Test Case Generation Program." Software description, 18 June 1986.

29. Lee, P. Realistic Compiler Generation. MA: MIT Press, 1989.

30. Lesk, M. E. Lex - A Lexical Analyzer Generator. Technicai Report CSTR 37, Murray Hill,
N.J.: Bell Laboratories, 1975.

31. Mandl, R. "Orthogonal Latin Squares: An Application of Experiment Design to Compiler
Testing," Communications of the ACM, 28(10):1054-1058 (October 1985).

32. Oliver, P. "Experiences in Building and Using Compiler Validation Systems." In Merwin, R.
and J. Zanca, editors, AFIPS Conference Proceedings, pages 1051-1057, New Jersey: AFIPS
Press, June 1979.

33. Paprotney, George B. LL - A Generator of Recursive Descent Parsers for LL(k) Languages.

MS thesis, Air Force Institute of Technology (AFIT), 1983.

34. Rennels, D. E-Mail Correspondence. New York University, NY., 14 September 1989.

35. ------ and others. "Tool to Identify Ada Language Constructs in Source Code." Paper
presented at the First Annual Armed Forces Communications and Electronics Association
Mid-West Regional Conference. Dayton, Ohio, 18 July 1990.

36. Schmidt, David A. Denotational Semantics - A Methodology for Language Development.
Boston: Allyn and Bacon, Inc., 1986.

37. Taylor, Tim T. Personal Correspondence. McDonnell Douglas Corporation, St. Louis MO, 2
January 1990.

38. UNIX User's Manual - Reference Guide. Berkclcy, CA: 4.3 Bcrkcley Software Distribution,
April 1986.

39. Wallace, Robert H. Practitioner's Guide to Ada. NY: McGraw-Hill, Inc., 1986.

40. Weiderman, N. II. Ada Adoption Handbook: Compiler Evaluation and Selection. Technical
Report AD-A207717, Pittsburgh: Software Engineering Institute, 1989.

BIB-2

41. Wichmann, B. A. Insecurities in the Ada Programming Language. Technical Report DITC
137/89, United Kingdom: National Physical Laboratory, 1989.

42. ------ and M. Davies. Experience with a Compiler Testing Tool. Technical Report DITC
138/89, United Kingdom: National Physical Laboratory, 1989.

43. Williams, R. J. Automatic Generation of Parsers Using Yacc and Lex. MS thesis, Wright
State University, OHt, 1986.

44. Wilson, Steven P. Technical Director Ada Validation Facility. "Ada Features Identification
System." Briefing to the AVF Managers Meeting, 8 June 1989.

BIB-3

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public rez'n; burden 0 t rs o1lectlrio -f nformation is estimated to averaqe hiur oer response. including the time for reviewing instructions, searchino existing data sources
qather,": ind ranta n- 'he data needed and completing and reviewing the cliectjon of information Send comments regarding this burden estimate or any other aspect of this
cltotb; I ni niarmutro, _n udin; sugq5tjon5 for reducing this burden to Wteashington Headouarters Services. Directorate for information Operation, and Reports, 12 15 jefferson
Davis h . aH . Suite 24 . hnton. v4i 22202.4302. and fo the Office of Management and Budget. Paperwork Reduction Project (0

7
04.01iB). Washmnton. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. RFPORT TYPE AND DATES COVERED

December 1990 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

AUTOMATIC DETERMINATION OF RECOMMENDED TEST
COMBINATIONS FOR ADA COMPILERS

6. AUTHOR(S)

James S. Marr, Captain, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology,WPAFB OH
45433-6583 AFIT/GCS/ENG/90D-09

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution
unlimited

13. ABSTRACT (Maximum 200 words)

Ada compilers are validated using the Ada Compiler Validation
Capability (ACVC) test suite, containing over 4000 individual test
programs. Each test program focuses, to the extent possible, on a
single language feature. Despite the advantages of this
"atomic testing" methodology, it is often the unexpected interactions
between language features that result in compilation problems. This
research investigated techniques to automatically identify recom-
mended combinations of Ada language features for compiler testing.
A prototype program was developed to analyze the Ada language gramnar
specification and generate a list of recommended combinations of
features to be tested. While the skill and intuition of the compiler
tester are essential to the annotation of the Ada grammar, the
prototype demonstrated that automated support tools can be used to
identify recommended combinations for Ada compiler testing.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada Compiler Validation, Compiler Testing, Grammars, 219
Compiler Testing, Test Case Generators, Compilers, 16. PRICE CODE
Ada Programming Language

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATIONOF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL
NSN 75-0-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by At1jSI Std Z39.18
298-102

